Author: Malyzhenkov, A.
Paper Title Page
MOOP12 Klynac Design Simulations and Experimental Setup 68
MOPLR001   use link to see paper's listing under its alternate paper code  
 
  • K.E. Nichols, B.E. Carlsten, A. Malyzhenkov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: The authors gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD Program for this work.
We present results of a proof-of-principle demonstration of the first ever klynac, a compact 1 MeV linear accelerator with integrated klystron source using one electron beam. This device is bi-resonant, utilizing one resonant circuit for the klystron input and gain cavities, and one for the klystron output and linac cavities. The purpose of a klynac-type device is to provide a compact and inexpensive alternative for a conventional 1 to 6 MeV accelerator. A conventional accelerator requires a separate RF source and linac and all the associated hardware needed for that architecture. The klynac configuration eliminates many of the components to reduce the weight of the entire system by 60%. We have built an 8-cavity, 2.84-GHz RF structure for a 1-MeV bi-resonant klynac. A 50-kV, 10-A electron gun provides the single beam needed. Numerical modeling was used to optimize the design. The separation between the klynac ouput cavity and the first accelerator cavity was adjusted to optimize the bunch capture and a pin-hole aperture between the two cavities reduces the beam current in the linac section to about 0.1 A. Standard high-shunt impedance linac cavities designs are used. We have fabricated the first test structure. The structure will be tested with beam in early Summer 2016. Results will be presented at LINAC 2016.
 
slides icon Slides MOOP12 [1.136 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOOP12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)