Author: Kim, Y.
Paper Title Page
TUPLR005 Development of 6 MeV European S-band Side-Coupled Industrial Electron Linear Accelerator at RTX & KAERI 478
SPWR002   use link to see paper's listing under its alternate paper code  
 
  • P. Buaphad, S.C. Cha
    KAERI, Daejon, Republic of Korea
  • P. Buaphad
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad
    RTX, Daejeon, Republic of Korea
  • Y. Kim
    ISU, Pocatello, Idaho, USA
 
  There are growing demands on low energy electron linear accelerator (linac) for industrial applications. Most of industrial electron linacs require a compact structure and limited undesirable neutron production to avoid huge lead shielding. Radiation Technology eXcellence (RTX) and Korea Atomic Energy Research Institute (KAERI) have developed a 6 MeV compact side-coupled linac by using 2998 MHz European S-band RF technology to meet those requirements. To design the linac structure, the 3D CST MICROWAVE STUDIO (CST-MWS) was used for various electromagnetic simulations, and ASTRA code was used for particle beam dynamics simulations. After various optimizations, the shunt impedance of 61 MΩ/m is obtained at 2998.38 MHz. With a peak RF power of 2.2 MW and a 47 cm-long structure, electron beam with a peak current of 150 mA can be accelerated from 25 keV to 6 MeV. For the industrial linac, the electron beam spotsize at an X-ray target, located 5 cm downstream of the linac structure exit should be smaller than 2 mm (FW). In addition, it can supply an X-ray dose rate of 8 Gy/min at 1 m after the X-ray target. In this paper, we describe the design concepts and optimization of the 2998 MHz side-coupled industrial linac structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)