Author: Kempkes, M.K.
Paper Title Page
TUPLR044 Design and Operation of Pulsed Power Systems Built to ESS Specifications 558
 
  • M.K. Kempkes, M.P.J. Gaudreau, M.G. Munderville, I. Roth
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
  • J. Domenge
    Sigma Phi Electronics, Wissembourg, France
  • J.L. Lancelot
    Sigmaphi, Vannes, France
 
  Diversified Technologies, Inc. (DTI), in partnership with SigmaPhi Electronics (SPE) has built three long pulse solid-state klystron transmitters to meet spallation source requirements. Two of the three units are installed at CEA Saclay and the National Institute of Nuclear and Particle Physics (IN2P3), where they will be used as test stands for the European Spallation Source (ESS). The systems delivered to CEA and IN2P3 demonstrate that the ESS klystron modulator specifications (115 kV, 25 A per klystron, 3.5 ms, 14 Hz) have been achieved in a reliable, manufacturable, and cost-effective design. There are only minor modifications required to support transition of this design to the full ESS Accelerator, with up to 100 klystrons. The systems will accommodate the recently-determined increase in average power (~660 kW), can offer flicker-free operation, are equally-capable of driving Klystrons or MBIOTs, and are designed for an expected MTBCF of over ten years, based on operational experience with similar systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR045 Thyratron Replacement 561
 
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes, M.G. Munderville
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: *Work supported by DOE under contract DE-SC0011292
Semiconductor thyristors have long been used as a replacement for thyratrons in low power or long pulse RF systems. To date, however, such thyristor assemblies have not demonstrated the reliability needed for installation in short pulse, high peak power RF stations used with many pulsed electron accelerators. The fast rising current in a thyristor tends to be carried in a small region, rather than across the whole device, and this localized current concentration can cause a short circuit failure. An alternate solid-state device, the insulated-gate bipolar transistor (IGBT), can readily operate at the speed needed for the accelerator, but commercial IGBTs cannot handle the voltage and current required. It is, however, possible to assemble these devices in arrays to reach the required performance levels without sacrificing their inherent speed. Diversified Technologies, Inc. (DTI) has patented and refined the technology required to build these arrays of series-parallel connected switches. DTI is currently developing an affordable, reliable, form-fit-function replacement for the klystron modulator thyratrons at SLAC capable of pulsing at 360 kV, 420 A, 6μs, and 120 Hz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC025 Solid-State Pulsed Power System for a Stripline Kicker 824
 
  • N. Butler, M.P.J. Gaudreau, M.K. Kempkes, M.G. Munderville, F.M. Niell
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: *Work supported by DOE under contract DE-SC0004255
Diversified Technologies, Inc. (DTI) has designed, built, and demonstrated a prototype pulse amplifier for stripline kicker service capable of less than 5 ns rise and fall times, 5 to 90 ns pulse lengths, peak power greater than 13.7 MW at pulse repetition rates exceeding 100 kHz, and measured jitter under 100 ps. The resulting pulse is precise and repeatable, and will be of great interest to accelerator facilities requiring electromagnetic kickers. The pulse generator is based on the original specifications for the NGLS fast deflector. DTI's planar inductive adder configuration uses compensated-silicon power transistors in low inductance leadless packages with a novel charge-pump gate drive to achieve unmatched performance. The prototyping efforts guided the design of the full unit, however the magnetics and transmission line effects of the system were not revealed until the entire unit was assembled. The unit was brought to LBNL, compared with other researcher's efforts, and was judged very favorably. A number of development prototypes have been constructed and tested, including a successful 18.7 kV, 749 A unit. The modularity of this design will enable configuration of systems to a wide range of potential applications in both kickers and other high speed requirements, including high performance radars, directed energy systems, and excimer lasers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)