Author: Kautzmann, G.
Paper Title Page
WE1A05 HIE-ISOLDE SC Linac Progress and Commissioning in 2016 663
 
  • W. Venturini Delsolaro, E. Bravin, N. Delruelle, M. Elias, E. Fadakis, J.A. Ferreira Somoza, F. Formenti, M.A. Fraser, J. Gayde, N. Guillotin, Y. Kadi, G. Kautzmann, T. Koettig, Y. Leclercq, M. Martino, M. Mician, A. Miyazaki, E. Montesinos, V. Parma, J.A. Rodriguez, S. Sadovich, E. Siesling, D. Smekens, M. Therasse, L. Valdarno, D. Valuch, G. Vandoni, U. Wagner, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE-ISOLDE project (High Intensity and Energy ISOLDE) reached an important milestone in October 2015 when the first physics run was carried out with radioactive Zn beams at 4 MV/m. This is a first stage in the upgrade of the REX post-accelerator, whereby the energy of the radioactive ion beams was increased from 3 to 4.3 MeV per nucleon. The facility will ultimately be equipped with four high-beta cryomodules that will accelerate the beams up to 10 MeV per nucleon for the heaviest isotopes available at ISOLDE. The first cryomodule of the new linac, hosting five superconducting cavities and one solenoid, was commissioned in summer 2015, while the second one was being assembled in clean room. The new high-energy beam transfer lines were installed and commissioned in the same lapse of time. Commissioning with two cryomodules is planned for Summer 2016 to prepare for a physics run at 5.5 MeV/u in the second half of the year. This contribution will focus on the results of the commissioning and operation of the SC linac in 2015. Plans for the second phase of the HIE-ISOLDE project will be highlighted.  
slides icon Slides WE1A05 [4.194 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE1A05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC016 Assembling Experience of the First Two HIE-ISOLDE Cryomodules 805
 
  • M. Therasse, G. Barlow, S. Bizzaglia, O. Capatina, A. Chrul, P. Demarest, J-B. Deschamps, J. Gayde, M. Gourragne, A. Harrison, G. Kautzmann, Y. Leclercq, D. Mergelkuhl, T. Mikkola, A. Miyazaki, V. Parma, J.A.F. Somoza, M. Struik, S. Teixeira L'pez, W. Venturini Delsolaro, L.R. Williams, P. Zhang
    CERN, Geneva, Switzerland
  • J. Dequaire
    Intitek, Lyon, France
 
  The assembly of the first two cryomodules (CM1 and CM2) of the new superconducting linear accelerator HIE-ISOLDE (High Intensity and Energy ISOLDE), located downstream of the REX-ISOLDE normal conducting accelerator, started one year and half ago. After a delicate assembly phase in the cleanroom which lasted nine months, the first cryomodule was transported to the ISOLDE hall on 2 May 2015 and coupled to the existing REX-ISOLDE accelerator, increasing the energy of the radioactive ion beams from 2.8 to 4.3 MeV per nucleon. The superconducting linac supplied the CERN-ISOLDE Facility, with radioactive zinc ions until the end of the proton run in November 2015. At the beginning of 2016, the second cryomodule was installed in the machine, increasing the energy to 5.5 MeV per nucleon. During commissioning of the first cryomodule in summer 2015, it was found that the performance of the RF superconductive cavities was limited by the over-heating of their RF couplers. The decision was taken to refurbish CM1 and reinstall it at the end of April. In this paper, we present the challenges faced and the experience gained with the cleanroom assembly of the first two cryomodules, especially the construction of the SC RF cavities and their RF ancillaries.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)