Author: Kaufman, J.J.
Paper Title Page
MOPLR037 Study of the Surface and Performance of Single-Cell Nb Cavities After Vertical EP Using Ninja Cathodes 217
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • P. Carbonnier, F. Éozénou, Y. Gasser, L. Maurice, C. Servouin
    CEA/DSM/IRFU, France
  • F. Furuta, M. Ge, T. Gruber, J.J. Kaufman, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • K. Ishimi
    MGI, Chiba, Japan
 
  A 1.3 GHz single-cell niobium (Nb) coupon cavity was vertically electropolished (VEPed) with three different Ninja cathodes which were specially designed for VEP of 1.3 GHz superconducting RF elliptical (ILC/Tesla type) cavities. The cathodes were fabricated to have different surface areas and different distances between cathode surface and the equator. The Ninja cathode prepared with an enhanced cathode surface area was covered with a meshed shield to avoid bubble attack on the surface of the cavity cell. It has been turned out that the anode-cathode distance and the cathode area affect surface morphology of the equator. A smooth equator surface was obtained in the cases in which the cathode surface was geometrically close to the equator or instead the cathode surface area was sufficiently larger. Two 1.3 GHz ILC/Tesla type single-cell cavities VEPed with the Ninja cathodes and using optimized conditions showed good performance in vertical tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR047 Advanced Vertical Electro-Polishing studies at Cornell with Faraday 233
 
  • F. Furuta, M. Ge, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T.D. Hall, M.E. Inman, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
 
  Cornell's SRF group and Faraday Technology Inc. have started collaborations on two phase-II SBIR projects. Both projects are aiming for the development of advanced Vertical Electro-Polishing (VEP) for Nb SRF cavities, such as HF free or acid free VEP protocols. These could be eco-friendlier alternatives for the standard, HF-based EP electrolyte used, and could bring new breakthrough performance for Nb SRF cavities. Here we give a status update and report first results from these two projects.  
poster icon Poster MOPLR047 [2.852 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP07 High Performance Next-Generation Nb3Sn Cavities for Future High Efficiency SRF Linacs 398
TUPRC031   use link to see paper's listing under its alternate paper code  
 
  • D.L. Hall, J.J. Kaufman, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE
A 1.3 GHz ILC-shape single-cell Nb3Sn cavity fabricated at Cornell has shown record performance, exceeding the cryogenic efficiency of niobium cavities at the gradients and quality factors demanded by some contemporary accelerator designs. An optimisation of the coating process has resulted in more cavities of the same design that achieve similar performance, proving the reproducibility of the method. In this paper, we discuss the current limitations on the peak accelerating gradients achieved by these cavities. In particular, high-pulsed-power RF testing, and thermometry mapping of the cavity during CW operation, are used to draw conclusions regarding the nature of the quench limitation. In light of these promising results, the feasibility and utility of applying the current state of the technology to a real-life application is discussed.
 
slides icon Slides TUOP07 [1.506 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC025 Low Temperature Nitrogen Baking of a Q0 SRF Cavities 472
 
  • P.N. Koufalis, F. Furuta, M. Ge, D. Gonnella, J.J. Kaufman, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Nitrogen-doping has led to an unprecedented increase in the intrinsic quality factor of bulk-niobium superconducting RF cavities. So far, high temperature baking in a nitrogen atmosphere is used almost exclusively to dope cavities. Recently, we have set focus on low temperature baking to produce similar performance increases and we present those results here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR025 Optimal Nitrogen Doping Level to Reach High Q0 523
 
  • D. Gonnella, T. Gruber, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF and US DOE
New continuous wave (CW) accelerators such as LCLS-II at SLAC require many SRF cavities operating in the medium field region at unprecedented high Q. In order to achieve this demanding goal, nitrogen-doping of the SRF cavities will be used. Nitrogen-doping has been shown to affect the BCS resistance both by a lowering of Rbcs at low fields and by the introduction of an anti-Q slope which enables the Q to continue increasing as the RF field is increased. The exact strength of this anti-Q slope is heavily dependent on the doping recipe and specifically the mean free path of the RF penetration layer of the doped cavities. In addition to its effect on Rbcs, the mean free path affects the amount of residual resistance obtained due to trapped magnetic flux. We have analyzed nine cavities prepared with different levels of nitrogen-doping to understand how BCS and residual resistance are affected by changes in the mean free path. Here we present a model based on these experimental results to predict the optimal doping level to reach the maximum Q at 16 MV/m based on the ambient magnetic field conditions. We find that if the cavities can be cooled with small amounts of trapped flux, moderate nitrogen-doping is better, while if they will have large amounts of trapped flux, lighter dopings should be used.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)