Author: Kashiwagi, S.
Paper Title Page
MOP106022 Generation of Coherent Undulator Radiation at ELPH, Tohoku University 330
 
  • S. Kashiwagi, T. Abe, H. Hama, F. Hinode, T. Muto, I. Nagasawa, K. Nanbu, H. Saito, Y. Saito, Y. Shibasaki, K. Takahashi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  A test accelerator as a coherent terahertz source (t-ACTS) has been under development at Tohoku University, in which an intense coherent terahertz (THz) radiation generated by an extremely short electron bunch. Velocity bunching scheme in a traveling accelerating structure is employed to generate femtosecond electron bunches. Spatial and temporal coherent radiation in THz region can be produced by the electron bunches with small transverse emittance. A long-period undulator, which has 25 periods with a period length of 10 cm and a peak magnetic field of 0.41 T, has been also developed and installed to provide intense coherent THz undulator radiation. By optimizing the bunch length, we found that it is possible to generate a coherent undulator radiation that contain only the fundamental wave from numerical studies. We are planning an experiment with 30 MeV beam to generate a coherent undulator radiation of 2.5THz. In the conference, we will report the preliminary experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC008 Electron Driven ILC Positron Source with a Low Gradient Capture Linac 430
 
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • T. Kakita
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, School of Science, Sendai, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
  • T. Okugi, T. Omori, M. Satoh, Y. Seimiya, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  ILC (International Linear Collider) is e+ e linear collider in the next high energy program promoted by ICFA. In ILC, an intense positron pulse in a multi-bunch format is generated with gamma ray from Undulator radiation. As a technical backup, the electron driven positron source has been studied. By employing a standing wave L-band accelerator for the capture linac, an enough amount of positron can be captured due to the large aperture, even with a limited accelerator gradient. However, the heavy beam loading up to 2 A perturbs the field gradient and profile along the longitudinal position. We present the capture performance of the ILC positron source including the heavy beam loading effect.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)