Author: Kanareykin, A.
Paper Title Page
MOP106021 Superconducting Traveling Wave Cavity Tuning Studies 327
 
  • R.A. Kostin
    LETI, Saint-Petersburg, Russia
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US DOE SBIR # DE-SC0006300
Superconducting traveling wave cavity (SCTW) can provide 1.2-1.4 times larger accelerating gradient than conventional standing wave SRF cavities [1]. Firstly, traveling wave opens the way to use other than Pi-mode phase advance per cell which increase transit time factor. Secondly, traveling wave is not so sensitive to cavity length as standing wave, which length is limited to 1 meter because of field flatness degradation. 3 cell SCTW cavity was proposed [2] and built for high gradient traveling wave demonstration and tuning studies. This paper describes analytical model that was used for cavity development. Tuning properties and requirements are also discussed.
' r.kostin@euclidtechlabs.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR008 3-Cell Superconducting Traveling Wave Cavity Tuning at Room Temperature 858
 
  • R.A. Kostin
    LETI, Saint-Petersburg, Russia
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • T.N. Khabiboulline, A.M. Rowe, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US DOE SBIR # DE-SC0006300
A superconducting traveling wave (SCTW) cavity with a feedback waveguide will support a higher average acceleration gradient compared to conventional SRF standing wave cavities [1]. Euclid Techlabs, in collaboration with Fermilab, previously demonstrated a high accelerating gradient in a single cell cavity with a feedback waveguide [2], and the new waveguide design did not limit the cavity performance. The next step is high gradient traveling wave SRF cavity test. A 3-Cell SCTW cavity was designed and developed [3] to demonstrate the SRF traveling wave regime. Two Nb SCTW cavities were built, characterized and cold tested in 2016. This paper presents the results of cavity inspection, field flatness analysis, along with a discussion of the tuning procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)