Author: Hirschmann, D.
Paper Title Page
TH1A04 SARAF 4-Rods RFQ RF Power Line Splitting Design and Test 693
 
  • J. Rodnizki, D. Hirschmann, Z. Horvitz, B. Kaizer, A. Perry, L. Weissman
    Soreq NRC, Yavne, Israel
 
  In the last years the SARAF 176 MHz 3.8 m long 4-rod RFQ accelerates routinely 2-4 mA CW proton beams to 1.5 MeV for basic studies in physics. However, it has not been successful in running CW deuteron beam for long periods. The findings imply that the RF coupler is the bottle neck to reach 250 kW CW dissipated power, equivalent to 65 kV inter-rod voltage, required to run the CW deuteron beam. A new design that splits the RFQ power between two couplers was built and commissioned successfully. A 3dB splitter and two new RF couplers were installed. The RF couplers improved design allows better brazing methods, vacuum properties and RF sealing. This design is innovative from two points of view: (a) implementation of two synchronized couplers located in two separated RF cells in a 4-rod RFQ. (b) The ability to run the RFQ in 200-250 kW to accelerate a 5 mA CW deuteron beam by 2.6 MV required for the new modulation design for 1.3 MeV/u. To our knowledge, SARAF RFQ will be the first 4-rod RFQ capable of running a CW deuteron beam at these power densities. This work may contribute to other 4-rod RFQ projects which intend to run CW beams in high dissipation power, like FRANZ and MYRRHA.  
slides icon Slides TH1A04 [6.109 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)