Author: Grespan, F.
Paper Title Page
MOPLR059 Commissioning Plans for the ESS DTL 264
 
  • M. Comunian, L. Bellan, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • M. Eshraqi, R. Miyamoto
    ESS, Lund, Sweden
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (a beam pulse of 2.86 ms, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. This article describes the commissioning strategy plans for the DTL part of the linac, techniques for finding the RF set-point of the 5 tanks and steering approach. Typical beam parameters, as proposed for commissioning purposes, are discussed as well and how the commissioning sequence of the tanks fits together with ongoing installation works in the tunnel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR062 European Spallation Source (ESS) Normal Conducting Front End Status Report 274
 
  • W. Wittmer, P.O. Gustavsson, F. Hellström, G. Hulla
    ESS, Lund, Sweden
  • I. Bustinduy, P.J. González, G. Harper, S. Varnasseri, C. de la Cruz
    ESS Bilbao, Zamudio, Spain
  • L. Celona, S. Gammino, L. Neri
    INFN/LNS, Catania, Italy
  • A.C. Chauveau, D. Chirpaz-Cerbat
    CEA/IRFU, Gif-sur-Yvette, France
  • F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
  • O. Midttun
    University of Bergen, Bergen, Norway
  • O. Piquet, B. Pottin
    CEA/DSM/IRFU, France
 
  The European Spallation Source (ESS) will deliver first protons on target by mid 2019. Civil construction of the accelerator tunnel has made good progress and will allow starting installation of the normal conducting frond end (NCFE) by end of 2017. To achieve these milestones the design of all major beam line components have been completed and the construction of the subsystems begun. We report on the advancement of the subsystems and the commissioning progress of the microwave discharge Proton Source (PS-ESS).  
poster icon Poster MOPLR062 [1.396 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC002 ESS DTL Beam Dynamics Comparison Between S-Code and T-Code 411
 
  • M. Comunian, L. Bellan, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the DTL beam dynamics comparison between the s-code TraceWin and the t-code Parmela is presented. Full field map of the permanent magnet quadrupoles (with COMSOL) and RF fields of each of the 5 tanks (with MDTFish) were used for the two programs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC005 Source and LEBT Beam Preparation for IFMIF-EVEDA RFQ 420
 
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P.-Y. Beauvais, B. Bolzon, N. Chauvin
    CEA/DSM/IRFU, France
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • P. Cara
    Fusion for Energy, Garching, Germany
  • H. Dzitko
    F4E, Germany
  • R. Gobin, F. Senée
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • R. Ichimiya, A. Kasugai, M. Sugimoto
    JAEA, Rokkasho, Japan
  • A. Marqueta, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  The commissioning phase of the IFMIF-EVEDA RFQ requires a complete beam characterization with simula-tions and measurements of the beam input from the IFMIF-EVEDA ion source and LEBT, in order to reach the RFQ input beam parameters. In this article, the simula-tions results of the complex source-LEBT with the corre-sponding set of measurements and their impact on the commissioning plan will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR049 Tuning the IFMIF 5MeV RFQ Accelerator 969
 
  • A. Palmieri, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  In order to allow proper operation of the IFMIF RFQ, it is necessary to perform a campaign of RF measurements on the cavity aimed, on one hand, at determining the basic RF parameters (frequency, Q0, etc.), on the other hand at verifying the fulfilment of the voltage law within the specified admitted range (±2% target value, ±4% acceptance value) of any of the perturbative components upon successive tuner settings as predicted by the tuner algorithm. These measurements also involve the determination of the proper depth of the end plates and the positioning and length of the Dipole Stabilizers (if any). In this contribution the tuning procedure and the results of such measurements will be presented for the case of the IFMIF RFQ will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR051 High-Power RF Test of IFMIF-EVEDA RFQ at INFN-LNL 975
 
  • E. Fagotti, L. Antoniazzi, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
 
  A partial test at full power and CW duty cycle will be performed at INFN-LNL on the last elements of the IFMIF RFQ, approximately two meters of structure, using a specific electromagnetic boundary element on the low energy end. The aim is to reach, in the RFQ coupled with its power coupler system, after an adequate period of conditioning, cw operation at nominal field level (132 kV between electrodes) for at least two hours without breakdown. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR066 Preparation and Installation of IFMIF-EVEDA RFQ at Rokkasho Site 1005
 
  • E. Fagotti, L. Antoniazzi, A. Baldo, A. Battistello, P. Bottin, L. Ferrari, M.G. Giacchini, F. Grespan, M. Montis, A. Pisent, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • D. Agguiaro, A.G. Colombo, A. Pepato, L. Ramina
    INFN- Sez. di Padova, Padova, Italy
  • F. Borotto Dalla Vecchia, G. Dughera, G. Giraudo, E.A. Macri, P. Mereu, R. Panero
    INFN-Torino, Torino, Italy
 
  The IFMIF-EVEDA RFQ is composed of 18 modules for a total length of 9.8 m and is designed to accelerate the 125 mA D+ beam up to 5 MeV at the frequency of 175 MHz. The RFQ is subdivided into three Super-Modules of six modules each. The Super-Modules were pre-assembled, aligned and vacuum tested at INFN-LNL and then shipped to Rokkasho (Japan). At Rokkasho site a series of test were performed in order to verify the effect of the shipment on the cavity. The assembly debug, shipment equipment and the sequence of operations are described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)