Author: Berrutti, P.
Paper Title Page
THPLR032 Update on SSR2 Cavity EM Design for PIP-II 920
 
  • P. Berrutti, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Proton Improvement Plan II (PIP-II) is the future plan for upgrading the Fermilab proton accelerator complex to a beam power capability of at least 1 MW delivered to the neutrino production target. A room temperature section accelerates H ions to 2.1 MeV and creates the desired bunch structure for injection into the superconducting (SC) linac. SC linac using five cavity types. One 162.5 MHz half wave resonator, two 325 MHz spoke resonators and two 650 MHz elliptical 5-cell cavities, provide acceleration to 800 MeV. The EM design of the second family of spoke resonator is presented in this paper. The work reported is a thorough electromagnetic study including: the RF parameters, multipacting mitigation and transverse field asymmetry. The cavity is now ready for structural design analysis.  
poster icon Poster THPLR032 [1.947 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR065 Beam Commissioning Status and Results of the FNAL PIP2IT Linear Accelerator RFQ 1002
 
  • J. Steimel, C.M. Baffes, P. Berrutti, J.-P. Carneiro, J.P. Edelen, T.N. Khabiboulline, L.R. Prost, V.E. Scarpine, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
  • A.L. Edelen
    CSU, Fort Collins, Colorado, USA
  • M.D. Hoff, A.R. Lambert, D. Li, T.H. Luo, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • V.L. Sista
    BARC, Mumbai, India
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
An H beam was accelerated through a continuous wave (CW) capable, 4-vane, radio frequency quadrupole (RFQ) at Fermilab that was designed and constructed at Berkeley Lab. This RFQ is designed to accelerate up to 10 mA H beam from 30 keV to 2.1 MeV in a test accelerator (PIP2IT). This paper presents results of specification verification and commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)