JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THPLR035: FZJ SRF TSR with Integrated LHe Vessel

TY - CONF
AU - Zaplatin, E.N.
ED - Yamazaki, Yoshishige
ED - Facco, Alberto
ED - McCausey, Amy
ED - Schaa, Volker RW
TI - FZJ SRF TSR with Integrated LHe Vessel
J2 - Proc. of LINAC2016, East Lansing, MI, USA, 25-30 September 2016
C1 - East Lansing, MI, USA
T2 - Linear Accelerator Conference
T3 - 28
LA - english
AB - Single- or Multi-Spoke SRF cavities are one of the basic accelerating structures for the low and intermediate energy part of many accelerators. Different types of external loads on the resonator walls predetermine the main working conditions of the SC cavities. The most important of them are very high electromagnetic fields that result in strong Lorentz forces acting on cavity walls and the pressure on cavity walls from the helium tank that also deforms the cavity shape. For the accelerators operating in pulsed regime the Lorentz forces are the dominant factor. The liquid helium vessel pressure instability even for 2K operations is the source of large microphonics and dominates for cw operation. Here we propose an innovative integrated helium vessel-cavity and stiffener design that will provide an effective passive damping minimizing df/dp ratio. Minimizing df/dp may be accomplished without an enhancement of the structure rigidity, which in turn minimizes the load on the cavity tuner. A separate stiffening scheme reducing Lorentz force cavity detuning to be added without violation of df/dp optimization. The developed at the Research Center in Jülich, Germany (FZJ) the 352 MHz, β=v/c=0.48 Triple-Spoke Resonator was used as an example to demonstrate the proposed conceptual integrated helium vessel-cavity design.
PB - JACoW
CP - Geneva, Switzerland
SP - 926
EP - 928
KW - cavity
KW - simulation
KW - SRF
KW - operation
KW - electromagnetic-fields
DA - 2017/05
PY - 2017
SN - 978-3-95450-169-4
DO - 10.18429/JACoW-LINAC2016-THPLR035
UR - http://jacow.org/linac2016/papers/thplr035.pdf
ER -