

PHASE LOCKED MAGNETRONS FOR ACCELERATORS

Amos Dexter

a.dexter@lancaster.ac.uk

Collaboration on SCRF demonstration

Lancaster Imran Tahir, Richard Carter, Graeme Burt

Jlab Haipeng Wang, Robert Rimmer, Kirk Davis

The Reflection Amplifier

- Linacs require accurate phase control
- Phase control requires an amplifier
- Magnetrons can be operated as reflection amplifiers

Compared to Klystrons, in general Magnetrons

- are smaller
- can be more efficient
- can use permanent magnets
- utilise lower d.c. voltage but higher current
- are easier to manufacture

Consequently they are much cheaper to purchase and operate

J. Kline "The magnetron as a negative-resistance amplifier," *IRE Transactions on Electron Devices*, vol. ED-8, Nov 1961

H.L. Thal and R.G. Lock, "Locking of magnetrons by an injected r.f. signal", *IEEE Trans. MTT*, vol. 13, 1965

Magnetron Exciting Superconducting Cavity

Demonstration of CW 2.45 GHz magnetron driving a specially manufactured superconducting cavity in a vertical test facility at JLab and the control of phase in the presence of microphonics was successful.

First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

A.C. Dexter, G. Burt, R. Carter, I. Tahir, H. Wang, K. Davis, and R. Rimmer, **Physical Review Special Topics: Accelerators and Beams, Vol. 14, No. 3, 17.03.2011, p. 032001.**

http://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.14.032001

NCASTER IVERSITY

Circuit for Phased Locked Operation

Phase Control Performance

Jefferson Lab

ICASTER

ERSI1

Amplifier Selection

	Magnetron	Klystron	
Peak Power	Lower	High	
Average power	Lower	High	
Gain	Lower	High	
Tuneable range	Large	Small	
Instantaneous bandwidth	Smaller	Small	
Noise	Higher	Lower	
Best Efficiency L band	~ 90%	ILC ~ 69%	
Best Efficiency X band	~ 50%	XL5 = 40%	
Pushing figure	Significant	Significant	
Pulling figure	Significant		
Amplifier cost	Low	high	
Modulator & magnet cost	Lower	high	

You would not use a magnetron if capital and running costs are not an issue.

Our conceptual application was for intense proton beams as would be required for a neutrino factory or future spallation sources.

Magnetrons can become an option for intense proton beams where they give significantly greater efficiency than other devices and bring down the lifetime cost of the machine without sacrificing performance and reliability.

Magnetron Size

	704 MHz
d _g	~ 360 mm
d _m	~ 165 mm
h _m	~ 650 mm
cost	£8000

If magnetron design is similar to industrial design with similar tolerances and can be made on same production line then cost may not be much more

FERMILAB-PUB-13-315-AD-TD

High-power magnetron transmitter as an RF source for superconducting linear accelerators

Grigory Kazakevich*, Rolland Johnson, Gene Flanagan, Frank Marhauser, Muons, Inc., Batavia, 60510 IL, USA

Vyacheslav Yakovlev, Brian Chase, Valeri Lebedev, Sergei Nagaitsev, Ralph Pasquinelli, Nikolay Solyak, Kenneth Quinn, and Daniel Wolff, Fermilab, Batavia, 60510 IL, USA

> Viatcheslav Pavlov, Budker Institute of Nuclear Physics (BINP), Novosibirsk, 630090, Russia

A concept of a high-power magnetron transmitter based on the vector addition of signals of two injectionlocked Continuous Wave (CW) magnetrons, intended to operate within a fast and precise control loop in phase and amplitude, is presented. This transmitter is proposed to drive Superconducting RF (SRF) cavities for intensity-frontier GeV-scale proton/ion linacs, such as the Fermilab Project X 3 GeV CW proton linac or linacs for Accelerator Driven System (ADS) projects. The transmitter consists of two 2-cascade injectionlocked magnetrons with outputs combined by a 3- dB hybrid. In such a scheme the phase and power control are accomplished by management of the phase and the phase difference, respectively, in both injection-locked magnetrons, allowing a fast and

Low Complexity Layout for Long Pulse Operation

NCASTER

Magnetron Pulling

Negative impedance $-Z_m$ to represent magnetron spokes excitation of RF in anode.

$$\ddot{\mathbf{V}} - \frac{\omega_{o}}{Q_{L}} \left(\frac{R_{L}}{Z_{m}(\mathbf{V})} - \frac{R_{L}}{R} - 1 \right) \dot{\mathbf{V}} + \omega_{o}^{2} \mathbf{V} = -j \frac{\omega_{o}\omega}{Q_{L}} \mathbf{V}_{inj} \sin(\omega t)$$

To get Adler's equation set $V(t) = A(t)exp\{-j(\omega t + \psi(t))\}$

Neglect terms to give

$$\frac{d\psi}{dt} = -\frac{V_{inj}}{V_{RF}} \frac{\omega_0}{2Q_L} \sin \psi + \omega_0 - \omega_i$$

Bandwidth

$$\Delta f = \frac{f_o}{2Q_L} \sqrt{\frac{P_{inj}}{P_{out}}}$$

Rieke diagram plots constant frequency and constant power lines on an admittance chart

$$gain < \frac{\pi Q_L}{2\omega_o T_{delay}} \sim \frac{\text{amplifier bandwidth}}{4 \times \text{cavity bandwidth}}$$

Where T_{delay} is the delay within the controller and amplifier chain in correcting an error.

Freq. (MHz)	Output (kW)	Injection (kW)	Amplification (dB)	Magnetron Q factor	Bandwidth (MHz)
704	1000	50	13	50	1.57
704	1000	5	23	50	0.5
2450	1	0.001	30	100	0.39

Simulation of magnetron driving SPL cavity

• Power variation constrained to 4%

CASTE

ERSI

- PI control plus simple feed forward when pulse arrives
- Drive power and drive phase depends here on cavity frequency offset caused by a 400Hz microphonic (40Hz shift)

Simulation parameters

Drive frequency in GHz	=	0.704 GHz		
Centre cavity frequency in GHz		0.704 GHz		
Number of cavity modes included	=	1		
Cavity Q factor	=	1.0 E+09		
External Q factor	=	4.0 E+06		
Cavity R over Q per cell	=	100 ohms		
Energy set point	=	21.8 J		
Amplitude set point	=	4.8792 MV		
Max Amplifier Power per cell	=	54 kW		
Max voltage set point (no beam)	=	13.740 MV		
Target fill time	=	9.0E-04 s		
Cycle number for beam arrival	=	599000		
Bunch charge (ILC=3.2 nC)	=	0.057 nC		
RF cycles between bunches	=	2		
Cavity frequency shift from microphonics = 40 Hz				
Cavity vibration frequency		= 400 Hz		
Phase measurement error(degree	es)	= 0 deg		
Fractional err in amplitude measurement = 0.0				
Time delay (latency) for control system = 1.0 μ s				
Control update interval		= 1.0 μs		
Gain constant for controller		= 0.55		
Beam arrival real feedforward terr	n	= 0.50E+10		
Beam arrival imag feedforward te	rm	= 0.13E+10		
Amplifier bandwidth		= 1.0 MHz		
Measurement filter bandwidth		= 2.0 MHz		
In pulse rms phase err	:	= 0.03217 deg		
In pulse rms amplitude	err	= 0.00102 %		

Simulated Cavity Response

Simulation

- Intense beams in user facilities need to be generated efficiently.
- Developing a new HPRF source is expensive and comparison to available sources is difficult before development is mature.
- •Need accelerator labs to explore new devices at accelerator test stands to have any chance of new devices becoming feasible alternatives.
- Future accelerators constrained on cost so research on efficient low cost sources is worthwhile.

