

Status of SwissFEL

ctor modulato

O generation

Hans-H. Braun on behalf of the SwissFEL team

27th Linear Accelerator Conference Geneva, September 2nd, 2014

- Overview
- Injector
- Main Linac

SwissFEL in a nutshell

ARAMIS Hard X-ray FEL. λ =0.1-0.7 nm	Main parameters	
Linear polarization, variable gap, in-vacuum Undulators	Wavelength from	0.1nm–7nm
First users 2017 Operation modes: SASE & self seeded	Photon energy	0.2-12 keV
operation modes. SAGE & sen secuci	Pulse duration	1 fs - 20 fs
ATHOS	e ⁻ Energy	5.8 GeV
Soft X-ray FEL, λ=0.7-7.0 nm	e ⁻ Bunch charge	10-200 pC
Variable polarization, Apple II undulators First users 2020 Operation modes: SASE & self seeded	Repetition rate	100 Hz

SwissFEL building

Building location (picture May 2013)

SwissFEL construction site, (picture July 2014)

SwissFEL Injector Test-Facility

laser beam : $\sigma_{x,y}$ = 270 µm, ΔT = 9.9 ps (FWHM), rise & falling time = 0.7 ps e-beams : $Q \sim 0.2$ nC, $\varepsilon_{\text{thermal}}$ = 0.195 µm, I_{peak} = 22 A

Beamline seen from

Commissiong crew with first beam

Injector Emittance Achievements

(uncompressed beam)

Example measurements projected emittance

Example slice emittance measurement at q_B =200pC

CORE SLICE EMITTANCES / OPTIDS ex = 251 ± 4 nm bx = 13.06 ± 0.30 m ax = -2.17 ± 0.04 Mx = 1.26PROJECTED EMITTANCES / OPTICS ex = 320 ± 6 nm bx = 13.84 ± 0.42 m

ax = -1.59 ± 0.06 MELOG8#5602

Summary emittance measurements (for uncompressed beam):

Measurement	σ _{laser} [mm]	ε _{n,x} [μm]	ε _{ո,y} [μm]	ε _{n,simulated} [μm]	ε _{n,required} @undulator [μm]
High-charge mo	de (~200 µ	oC):			
projected:	0.21	0.38	0.37	0.350	0.65
core slice:	0.21	0.25	_	0.330	0.43
Low-charge mo	de (~10 pC	C):			
projected:	0.10	0.16	0.18	0.096	0.25
core slice:	0.10	≤ 0.15*	_	0.080	0.18

Low charge (10 pC): $\begin{array}{l} \mbox{EMITTANCES / OPTICS} \\ \mbox{ex} = 162 \pm 2 \mbox{ nm} \ \mbox{ey} = 188 \pm 3 \mbox{ nm} \\ \mbox{bx} = 15.26 \pm 0.23 \mbox{ mj} \mbox{by} = 12.82 \pm 0.21 \mbox{ m} \\ \mbox{ax} = 1.53 \pm 0.03 \mbox{ mj} \mbox{ay} = 1.47 \pm 0.03 \\ \mbox{mx} = 1.01 \mbox{ l} \mbox{my} = 1.06 \end{array}$ × 10 alized yp -2 -2 -1 2 -1 0 2 normalized × normalized y × 10^{.5} × 10⁻⁵ fitted fitted 0.2 measured measured igma, [mm 0.1

> 10 15

measurement index

5 10 measurement index

15

ELOG #7441

*measurement limited by signal-to-noise ratio

U15 Undulator for ARAMIS beamline

SASE lasing in in SwissFEL Injector Test Facility

Layout and main RF systems

Injector

2.6 cell S-band RF gun Cu or Cs₂Te cathodes fed by 1 S-Band RF station

 $6 \times 4m$ S-band travelling wave, const. gradient, $2\pi/3$ acc. structures fed by 4 S-Band RF stations

1 x 1m X-band travelling wave, const. grad. harmonic linearizer fed by 1 X-band RF station (build by CERN/ELETTRA/PSI collab.

Linacs

104 (+8) x 2m C-band travelling wave, const. gradient, $2\pi/3$ acc. structures with BOC RF pulse compression fed by 26 (+2) C-band RF station

2 x 2m C-band transverse deflecting structures fed by RF switch from last C-band station

Overview RF cavities

(without TDS)

	Unit	S-band photogun	S-band cavities (injector)	X-band cavities (injector)	C-band cavities (Linacs 1)	C-band cavities (Linacs 2)	C-band cavities (Linacs 3)	C-band cavities (Athos linac)
Frequency (MHz) – f _b =142.8 MHz		2998.8 (21 x f _b)	2998.8 (21 x f _b)	11995.2 (84 x f _b)		5712	(40 X f _b)	
Phase Advance		π	2π/3	5π/6		2	π/3	
Active Length	mm	162	4070	750		1	978	
Total Length	mm		4150	965		2	050	
Number of Cells		2.5	122	72		-	L13	
Operating Temperature	°C	40	40	31			40	
Maximum Gradient	MV/m	120	25	34	28	28	30	30
Operating Gradient	MV/m	100	14.8	25	27	27.5	28.5	28.5
Required Input Peak Power per structure		19 MW for 100 MV/m	24 MW for 16 MV/m	7 MW for 20 MV/m		27.2 MW fo	or 27.5 MV/	m
Klystron maximum performance		35 MW – 4.5 μs	45 MW – 4.5 μs	50 MW – 1.5 µs		50 MW 40 M	/ – 2.5 μs W – 3 μs	
Filling Time	ns	490	1000	105		3	322	
Number of structures		1	6	2	36	16	52	8
Number of structures per klystron		1	1 or 2	2	4			

RF gun

Machined "on tune" according to HFSS No tuning plungers No tuning step during machining

Best design features from LCLS and CTF/PHIN RF guns adopted

- quadrupole compensated symmetric coupler
- load lock
- **β=2**

Parameter	HFSS	Measured	unit
π -mode freq.	2997.912	2997.912	MHz
β -coupling	1.98	2.02	
Q_0	13630	13690 ± 100	
Filling time	485	481	ns
Mode sep.	16.36	16.20	MHz
Field balance	>98	>98	7_{0}
Operational temp.	57.7	53.0	$^{\circ}C$

Machining: VDL Brazing: PSI workshop

Programmed RF Amplitude for RF Gun to minimize heat load and dark current

Amplitude modulation scheme with 150 ns flattop - fast filling and two bunch operation.

Shorter RF pulses

- →Thermal load reduction from 3 to 0.9 KW
- \rightarrow Dark current reduction
- \rightarrow Less RF breakdown

J.-Y. Raguin et al., "The Swiss FEL RF Gun: RF Design and Thermal Analysis", in Proc. LINAC 2012, Tel-Aviv

U.Ellenberger et al., "The SwissFEL RF Gun: Manufacturing and Proof of Precision by Field ProfileMeasurements", THPP114, this conference

P. Craievich et al., "High Power RF Test and Analysis of Dark Current in the SwissFEL-GUN", proc. FEL 2014, Basel

M. Schaer et al., "Study of a C-Band Hybrid Electron Gun for SwissFEL", TUPP112, this conference

S-band Structures for Injector

Parameter		Value			
Operating frequency		2998.8 MHz			
Phase advance per cell		$2\pi/3$			
Total number of cells		1	122		
Accelerating gradient		20 MV/m			
Maximum pulse	repetition fro	equency 100 Hz			
	v_g/c (%)	r/Q (k Ω /m)	Q		
First cell	2.91	3.85	11688		
Middle cell	1.87	4.23	11640		
Last cell	0.79	4.81	11589		

J.-Y. Raguin, "The Swiss FEL S-Band Accelerating Structure: RF Design", Proc. LINAC 2012, Tel-Aviv, Israel, 2012

Input- Output symmetric couplers

brazing & tuning by Research Instruments

Minimize investment + operation cost Preserve emittance for one or two bunches Longitudinal wake of Linac 3 has to compensate residual energy chirp from bunch compression Transverse wakefield must allow for two bunches spaced by 28 ns Design should facilitate assembly and installation Minimize sources of transverse and longitudinal jitter

Choices

- Normal conducting, C-band frequency, profit from KEK-JLC-C & Spring8/SACLA development
- High shunt impedance structure design with moderate gradient of 28MV/m
- Structure manufacturing tolerances tight enough to allow "on tune" fabrication,
 → no tuning provisions, no tuning step in production process
- High Q BOC (=barrel open cavity) RF pulse compressor
- Waveguide distribution and BOC mounted on girder
 → pre-assembly with most components before transport in tunnel
- Klystron modulator with solid state HV switches
 → compact design, very good pulse flatness, small pulse to pulse jitters
- Optical fiber reference distribution, high performance digital LLRF
- Precise cooling water temperature regulation with local smart controllers incl. LLRF as T sensor
- \emptyset 16mm vacuum pipe \rightarrow low power, air-cooled quadrupoles; high resolution cavity BPMs

cost optimization pulsed n.c. linac for SwissFEL

Advantage of C-band is in real-estate needs and electricity consumption

SwissFEL Main Linac building block

Linac girder

Assembly of First Linac Module

C-band structure

First 2 m C-band structures

- 5 structures have been brazed so far
- High power results for first structure:
 - ightarrow conditioned to 52 MV / m
 - → Break-down rate at 52 MV / m ≈2 x 10⁻⁶
 - → At nominal 28MV/m, break-down rate negilible

R. Zennaro et al.,

"Measurement and High Power Test of the First C-Band Accelerating Structure for SwissFEL", MOPP119, this conference

C-band structure with BOC pulse compression in RF power test area

Assembly & brazing set-up for series production

2 m C-band structure: longitudinal field distribution

BOC Pulse compressor

whispering gallery mode

RF design:

- ✓ Single cavity
- Whispering gallery mode with analytical solution
- ✓ intrinsic high Q>200000

Mechanical design:

Simple and robust design:

 Inner body from a single piece

- ✓ Two brazing steps
- Machined on tune

R. Zennaro et al., "C-band RF pulse compressor for the SwissFEL", Proc. IPAC 2013, Shanghai

U. Ellenberger et al., "The SwissFEL C-Band RF Pulse Compressor: Manufacturing and Proof of Precision by RF Measurements", FEL 2014, Basel

A. Citterio et al., "C-band Load Development for the High Power Test of the SwissFEL RF Pulse Compressor", this conf. MOPP118

Prototype modulator from Scandinova

ScandiNova

Design of C-Band K2-3 Modulator

50MW Klystron and K2-3 Modulator

ScandiNova

Based on K2-series: new control system, new mechanical layout. Achieves excellent pulse shape and an rms stability of 13 ppm.

ScandiNova K2-3 FOR C-BAND AT 50 MW-LEVEL, DESIGNED FOR 20 PPM STABILITY

Klystron Voltage & Current Pulses 366kV / 325A / 3.5µs / 100Hz

Recorded Stability on Pulse Middle section Avgerage over 0.5 μs

Stab = 119 uV / 9.51 V = 13 ppm RMS

Peak to Peak 74 ppm

AMPEGON

Mechanical Layout of the new prototype Modulator

The Modulator consists of the following mechanical units:

- 1. Modulator tank, housing the oil immersed pulse transformer, HV divider and current measurement
- 2. 12 Pulse Power Modules (IGBT modules), including pre-magnetisation circuits
- Modulator control, HV earthing, cap bank discharge, oil supervision and water manifold
- 4. 19" rack housing the active PFC power supplies and focus power supplies
- 5. 19" rack housing the precision boost converter, control system, klystron auxiliary power supplies
- 6. 400VAC / 50Hz Mains input and distribution cabinet

AMPEGON

Type-µ modulator prototype for PSI C-band

Measured pulses on demonstrator modulator

(Resistive load, no perveance; pulse parameters like overshoot not optimized)

Reference distribution and LLRF

First results with I-Tech/PSI s-band (2.9988GHz) link prototype

Influence of temperature, humidity variations and mechanical vibrations are compensated by group delay control.

Further drift reduction expected.

C-band LLRF prototype system

A. Hauff et al., "SwissFEL C-band LLRF Prototype System", this conf. TUPP111

Z. Geng et al., "Architecture Design for the SwissFEL LLRF System", this conf. THPP113

Principle of the temperature regulation units

- Mixing ratio of ~ 1:10 improves temperature stability in stabilized circuit by factor of 10 compared to supply water
- A linearly regulated heater is used in a regulation loop to improve the stability further
- Temperature sensors are used as monitors when RF is turned off
- LLRF-based temperature measurement is used as an additional monitor during RF operation

BOC temperature stabilization

Temperature stability (T-sensor based): BOC frequency stability (LLRF based): BOC temperature stability (LLRF based): ≈3 mK rms ≈ 300 Hz ≈ 3 mK rms

Energy recovery for SwissFEL

Grundwasserkarte

Wärmerückgewinnung

Two bunch operation

Beam trajectories of the straight and deflected beam. The color rectangles represent the corresponding magnet's field region: Kx – Kicker magnet, Dx – Dipole magnet, S – Septum magnet, Q – Quadrupole magnet.

Total deflection angle **Deflection stability** Total magnetic length Line field integral

- 35 mrad (horizontal)
- ±10 ppm pk-pk
- 1.0 m
- 350 mT.m

Resonant Kicker Concept

Challenge: get 6 GeV of Linac put here until LINAC 2016 conference

TE