

COMMISSIONING OF THE LOW-ENERGY PART OF LINAC4

ALESSANDRA LOMBARDI FOR THE COMMISSIONING TEAM

9/2/2014

Alessandra Lombardi

THE BIG PICTURE : LHC LUMINOSITY

PRESENT AND EXPECTATION

LINAC2		LINAC4
protons	Charge exchange injection (reduce emittance)	H-
160mA	Lower current means better beam quality	70mA peak 40 mA after chopping
50 MeV	Space charge tune shift at PSB injection is half	160 MeV
1 π mm mrad	Smaller emittance	0.4 π mm mrad
100 µsec 1Hz	Longer injection in the PSB (100turns)	400 µsec 1Hz
200 MHz / 40 m	RF frequency that is not widespread anymore. No components "off the shelf".	352 MHz / 80 m
Since 1978	Tanks, vacuum, mechanics are aging.	All new component
No longitudinal matching at injection	30-50% of the beam lost at injection	Fast chopping at 3MeV Energy painting with the last accelerating modules

			LIN	AC4 machin	e layout- 352MHz
	П-mode	CCDTL		DTL	Pre-injector
	160 MeV	100 Me	٧	50 MeV	3MeV
	23 m 12 Modules 8 Klystrons: 12MW 12 EMQ 12 steerer	25 m 7 Modules 7 Klystrons 7 EMQ + 14 7 steerers	: 7 MW 4 PMQ	19 m 3 Tanks 3 Klystrons : 5 MW 1 EMQ 114 PMQ 2 steerers	9 m Source(s) 2 solenoids RFQ 11 EMQ 3 Cavities 2 Chopper units In-line dump
		-76m		 beam 	Source
				Comn	nissioning stages
160 MeV	105 MeV 50	MeV	12 MeV	3 MeV	45 keV

160 MeV	105 MeV	50 MeV	12 MeV	3 MeV	45 keV
End 2015	August 2015	May 2015	Well advanced	Chopping demonstrated	Not the final source

	LINAC4 machine layout- 352MHz				
	П-mode	CCDTL		DTL	Pre-injector
	160 MeV	100 Me	V	50 MeV	3MeV
	23 m25 m12 Modules7 Modu8 Klystrons: 12MW7 Klystro12 EMQ7 EMQ -12 steerer7 steere		: 7 MW 4 PMQ	19 m 3 Tanks 3 Klystrons : 5 MW 1 EMQ 114 PMQ 2 steerers	9 m Source(s) 2 solenoids RFQ 11 EMQ 3 Cavities 2 Chopper units In-line dump
		~76m		beam	
				Comm	nissioning stages
160 MeV	105 MeV	50 MeV	12 MeV	3 MeV	45 keV
End 2015	August 2015	May 2015	Well advanced	Chopping demonstrate	Not the final ed source

MEASUREMENTS AT 45 KEV

1- take measurements varying solenoidal field and generate in tracking code

2 - back-trace to source out

3 - Result : we have an empirical input beam distribution that very well represents the dynamics in the LEBT and the rest of the accelerator (remember HB2010)

9/2/2014

AT THE RFQ INPUT PLANE

AT THE RFQ INPUT PLANE

FIRST BEAM THRU THE RFO

Wednesday 13/03/13 at 16h10 10mA H- accelerated to 3 MeV

9/2/2014

AT 3 MEV : 4 BURNING QUESTIONS

- Does the RFQ work?
- Does the chopper chop?
- If yes , does it degrade the emittance of the thru beam ?
- Can the beam be matched to the DTL (permanent magnet, not much flexibility....)?

1-RFQ TRANSMISSION

RFQ Transmission vs. RF power for different pressure in the LEBT (neutralisation). The nominal RFQ power is 400 kW.

9/2/2014

2-"CHOPPING"

REMOVING MICROBUNCHES (150/352) TO ADAPT THE 352MHZ LINAC BUNCHES TO THE 1 MHZ BOOSTER FREQUENCY

2-"CHOPPING"

REMOVING MICROBUNCHES (150/352) TO ADAPT THE 352MHZ LINAC BUNCHES TO THE 1 MHZ BOOSTER FREQUENCY

CHOPPER DEVICE

- Meander line on ceramic board
- Housed in a quadrupole
- 700 Volts
- Rise/fall time : 2nsec

2-BEAM CHOPPING

At the wire scanner before the dump

Meas

2014

27

40

-

-

1

95

45

Vert

None

Max Pos

Num Pts.

Settings Plane

Fit

First

Last

View Results

10

15

9/2/2014

3-EMITTANCE OF THE THROUGH BEAM

Emittance measured with chopper off (left) and with chopper on (right) downstream the inline dump

4-MATCHING TO THE DTL

9/2/2014

beam.

4-MATCHING TO THE DTL

simulation codes (TraceWin and Travel) predict 95% transmission thru the DTL for the measured beam. FROM 3 TO 12 MEV

SO FAR

- Acceleration 45 keV to 12 MeV is validated
 - RFQ holds the voltage, accelerates and responds to changes in RF power
 - The chopper chops
 - DTL tank1 accelerates the beam without losses

THE MEASUREMENT BENCH

RMS NORMALISED TRANSVERSE EMITTANCE AT 3 MEV SEEMS TO BE <u>0.3 PI MM MRAD</u>

RMS NORMALISED TRANSVERSE EMITTANCE AT 3 MEV SEEMS TO BE <u>0.3 PI MM MRAD</u>

RMS NORMALISED TRANSVERSE EMITTANCE AT 12 MEV SEEMS TO BE <u>WHAT WE EXPECT</u>

LONG EMITTANCE AT 3MEV-INDIRECT

Bunch Shape Monitor

LONG EMITTANCE AT 3MEV-INDIRECT

LONG EMITTANCE AT 3MEV-INDIRECT

LONG EMITTANCE AT 3 MEV - INDIRECT

 Multiparticle Phase spaces [C:\MebtComi\BSM\1508\PARMTEQ.DST 9 O 💽 - 🗆 🛃 🗄 🕄 🦪 🖗 PlotWin - CEA/DSM/Irfu/SACM Ele: 0 [0 m] NGOOD : 36173 / 36173 P(deg @352.21 MHz) - W(MeV 0.1 0.05 0--0.05 -0.1 40 Po=-0.000 deg Wo=2.99225 MeV Multiparticle Phase spaces [C:\MebtComi\BSM\1508\RECONS.DST] 😣 💽 - 🗆 🛃 🗄 3 🦃 🗍 PlotWin - CEA/DSM/Irfu/SACN Ele: 0 [0 m] NGOOD : 36173 / 36173 P(deg @352.21 MHz) - W(MeV 0.1 0.05 0 --0.05 -0.1 Po=-0.000 deg Wo=2.99225 MeV

Measured from phase profiles

Alpha=0.2 Beta =380. deg/MeV Emitt =0.16 deg MeV

Expected from simulations :

Alpha= 0.0 Beta = 400 deg/MeV Emitt = 0.19 deg MeV Energy spread Expected from simu : 21 keV Measured from phase : 22 keV Spectrometre : 19 keV

SPECTROMETRE -AT 12 MEV

rms energy spread : 49.2 keV (simulations)

rms energy spread : 52.8 keV (measured)

SO FAR....

Acceleration 45 keV to 12 MeV is validated

Emittance Measurements confirm that the beam behaves according to code predictions. (PARMTEQ, PATH, TRACEWIN)

Reconstruction technique and diagnostic performance are validated !

Reconstruction is based on :

- 1) Finding first guess with conventional matrix inversion.
- 2) Fine tuning the guess by forward tracking and best fitting the measurement's data

(MISTAKES MADE AND).....LESSONS LEARNT

- 1) A 10 Watt beam (10mA, 3MeV, 300 µsec, 1Hz) can drill a hole through a bellow
- 2) Diagnostics devices can multitask
- 3) Effect of RF defocusing is measurable at 3 MeV!
- 4) DTL tank1 can act as a longitudinal monitor

(MISTAKES MADE AND)..... LESSONS LEARNT

1) A 10 Watt beam (10mA, 3MeV, 300 µsec, 1Hz) can drill a hole through a bellow

2) Dia 3) Effe

4) DTL tank1 can act as a longitudinal monitor

YOU CAN DO SO MUCH WITH SO LITTLE (AND THIS IS NOT ALWAYS A GOOD THING)

On December 12 at 16:30 a severe vacuum leak was observed in the MEBT line. It was located on the bellow downstream the first buncher cavity, on the left side when looking down the beam line.

A severe misalignment between the RFQ and the MEBT that was not present at the 3 MeV test stand and was later confirmed by survey

An optic that favoured **amplification of this misalignment** whilst focusing the beam to sub mm size in the other direction

A phase advance such that the loss occurred on the "wave" (or lip) of the bellow which is only 200 microns thick and it is an aperture limitation (25.1 mm vs 28 mm of adjacent vacuum chamber).

YOU CAN DO SO MUCH WITH SO LITTLE (AND THIS IS NOT ALWAYS A GOOD THING)

On December 12 at 16:30 a severe vacuum leak was observed in the MEBT line. It was located on the bellow downstream the first buncher cavity, on the left side when looking down the beam line.

A severe misalignment between the RFQ and the MEBT that was not present at the 3 MeV test stand and was later confirmed by survey

¹An optic that favoured **amplification of this misalignment** whilst focusing the beam to sub mm size in the other direction

A phase advance such that the loss occurred on the "wave" (or lip) of the bellow which is only 200 microns thick and it is an aperture limitation (25.1 mm vs 28 mm of adjacent vacuum chamber).

DTL ACCEPTANCE AND BUNCHER SETTINGS

SUMMARY

- The LINAC4 has been commissioned up to 12 MeV with a temporary source. Only 148 MeV to go! (3 commissioning stages over 6 are done)
- The agreement between measurement and simulations is very good, thanks to the time we have dedicated to generate a distribution from measurements at the low energy end HB2010. Simulation have been our guide and give us a hint of where to look in case of problems (e.g. alignment issues)
- We have validated transverse and longitudinal emittance reconstruction methods which will be extensively used for the next stages of commissioning
- We have not yet experienced full space charge effects, which will come with the new source.

VISIT THESES POSTERS!

- On longitudinal measurements : MOPP025
- On transverse measurements and reconstruction : THPP033/TUPP100 and TUPP038
- On the source : TUPP036
- On laser-based emittance measurement : TUPP035
- On the Radio Frequency Quadrupole : THPP037
- On the DTL: TUPP089, SUPG018, THPP036, THPP0
- On LLRF : THPP027