



### **ILC Accelerator Concept**





- Electron and Positron Sources (e-, e+) :
- Damping Ring (DR):
- Ring to ML beam transport (RTML)
- Main Linac (ML) : SCRF Technology
- Beam Delivery System (BDS)







### **ILC** parameters



Table 2.1. Summary table of the 200–500 GeV baseline parameters for the ILC. The reported luminosity numbers areresults of simulation [12]

| Centre-of-mass energy                       | $E_{CM}$            | GeV                                | 200   | 230   | 250   | 350  | 500  |
|---------------------------------------------|---------------------|------------------------------------|-------|-------|-------|------|------|
| Luminosity pulse repetition rate            |                     | Hz                                 | 5     | 5     | 5     | 5    | 5    |
| Positron production mode                    |                     |                                    | 10 Hz | 10 Hz | 10 Hz | nom. | nom. |
| Estimated AC power                          | $P_{AC}$            | MW                                 | 114   | 119   | 122   | 121  | 163  |
| Bunch population                            | N                   | $\times 10^{10}$                   | 2     | 2     | 2     | 2    | 2    |
| Number of bunches                           | $n_b$               |                                    | 1312  | 1312  | 1312  | 1312 | 1312 |
| Linac bunch interval                        | $\Delta t_b$        | ns                                 | 554   | 554   | 554   | 554  | 554  |
| RMS bunch length                            | $\sigma_z$          | μm                                 | 300   | 300   | 300   | 300  | 300  |
| Normalized horizontal emittance at IP       | $\gamma \epsilon_x$ | μm                                 | 10    | 10    | 10    | 10   | 10   |
| Normalized vertical emittance at IP         | $\gamma \epsilon_y$ | nm                                 | 35    | 35    | 35    | 35   | 35   |
| Horizontal beta function at IP              | $eta_x^*$           | mm                                 | 16    | 14    | 13    | 16   | 11   |
| Vertical beta function at IP                | $\beta_y^*$         | mm                                 | 0.34  | 0.38  | 0.41  | 0.34 | 0.48 |
| RMS horizontal beam size at IP              | $\sigma_x^*$        | nm                                 | 904   | 789   | 729   | 684  | 474  |
| RMS vertical beam size at IP                | $\sigma_{u}^{*}$    | nm                                 | 7.8   | 7.7   | 7.7   | 5.9  | 5.9  |
| Vertical disruption parameter               | $D_y$               |                                    | 24.3  | 24.5  | 24.5  | 24.3 | 24.6 |
| Fractional RMS energy loss to beamstrahlung | $\delta_{BS}$       | %                                  | 0.65  | 0.83  | 0.97  | 1.9  | 4.5  |
| Luminosity                                  | L                   | $	imes 10^{34}~{ m cm^{-2}s^{-1}}$ | 0.56  | 0.67  | 0.75  | 1.0  | 1.8  |
| Fraction of L in top 1% $E_{CM}$            | $L_{0.01}$          | %                                  | 91    | 89    | 87    | 77   | 58   |
| Electron polarisation                       | $P_{-}$             | %                                  | 80    | 80    | 80    | 80   | 80   |
| Positron polarisation                       | $P_+$               | %                                  | 30    | 30    | 30    | 30   | 30   |
| Electron relative energy spread at IP       | $\Delta p/p$        | %                                  | 0.20  | 0.19  | 0.19  | 0.16 | 0.13 |
| Positron relative energy spread at IP       | $\Delta p/p$        | %                                  | 0.19  | 0.17  | 0.15  | 0.10 | 0.07 |

Upgradeable to 1 GeV – parameters sets also available



### **ILC TDR 2013**



#### Volume 1 - Executive Summary



Download the pdf 📷 (9.5 MB) THE INTERNATIONAL LINEAR COLLIDER

Volume 3 - Accelerator



Part I: **R&D** in the Technical **Design Phase** 

Download the pdf 📷 (91 MB)



Volume 3 - Accelerator Part II:

Download the pdf m (72 MB)

Volume 4 - Detectors



#### Download the pdf m (66 MB)



Download the pdf T (5.5 MB) Visit the web site

http://www.linearcollider.org/ILC/Publications/Technical-Design-Report

#### Volume 2 - Physics



### CLIC Layout at 3 TeV







### CLIC Layout at 3 TeV





# Possible CLIC stages studied in the CDR





Fig. 3.6: Simplified upgrade scheme for CLIC staging scenario B.

#### Key features:

- High gradient (energy/length)
- Small beams (luminosity)
- Repetition rates and bunch spacing (experimental conditions)

| Table 1: Parameters for the | ne CLIC energy | stages of scenario A. |
|-----------------------------|----------------|-----------------------|
|-----------------------------|----------------|-----------------------|

| Parameter                           | Symbol                        | Unit                                        | Stage 1 | Stage 2       | Stage 3 |
|-------------------------------------|-------------------------------|---------------------------------------------|---------|---------------|---------|
| Centre-of-mass energy               | $\sqrt{s}$                    | GeV                                         | 500     | 1400          | 3000    |
| Repetition frequency                | frep                          | Hz                                          | 50      | 50            | 50      |
| Number of bunches per train         | nb                            |                                             | 354     | 312           | 312     |
| Bunch separation                    | $\Delta t$                    | ns                                          | 0.5     | 0.5           | 0.5     |
| Accelerating gradient               | G                             | MV/m                                        | 80      | 80/100        | 100     |
| Total luminosity                    | L                             | $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$  | 2.3     | 3.2           | 5.9     |
| Luminosity above 99% of $\sqrt{s}$  | $\mathscr{L}_{0.01}$          | $10^{34}  \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | 1.4     | 1.3           | 2       |
| Main tunnel length                  |                               | km                                          | 13.2    | 27.2          | 48.3    |
| Charge per bunch                    | Ν                             | 10 <sup>9</sup>                             | 6.8     | 3.7           | 3.7     |
| Bunch length                        | $\sigma_z$                    | μm                                          | 72      | 44            | 44      |
| IP beam size                        | $\sigma_x/\sigma_y$           | nm                                          | 200/2.6 | $\sim 60/1.5$ | ~ 40/1  |
| Normalised emittance (end of linac) | $\varepsilon_x/\varepsilon_y$ | nm                                          | 2350/20 | 660/20        | 660/20  |
| Normalised emittance (IP)           | $\varepsilon_x/\varepsilon_y$ | nm                                          | 2400/25 | —             | —       |
| Estimated power consumption         | Pwall                         | MW                                          | 272     | 364           | 589     |

Table 2: Parameters for the CLIC energy stages of scenario B.

| Parameter                           | Symbol                        | Unit                                              | Stage 1 | Stage 2       | Stage 3 |
|-------------------------------------|-------------------------------|---------------------------------------------------|---------|---------------|---------|
| Centre-of-mass energy               | $\sqrt{s}$                    | GeV                                               | 500     | 1500          | 3000    |
| Repetition frequency                | frep                          | Hz                                                | 50      | 50            | 50      |
| Number of bunches per train         | nb                            |                                                   | 312     | 312           | 312     |
| Bunch separation                    | $\Delta t$                    | ns                                                | 0.5     | 0.5           | 0.5     |
| Accelerating gradient               | G                             | MV/m                                              | 100     | 100           | 100     |
| Total luminosity                    | L                             | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 1.3     | 3.7           | 5.9     |
| Luminosity above 99% of $\sqrt{s}$  | $\mathscr{L}_{0.01}$          | $10^{34}  \mathrm{cm}^{-2} \mathrm{s}^{-1}$       | 0.7     | 1.4           | 2       |
| Main tunnel length                  |                               | km                                                | 11.4    | 27.2          | 48.3    |
| Charge per bunch                    | Ν                             | 10 <sup>9</sup>                                   | 3.7     | 3.7           | 3.7     |
| Bunch length                        | $\sigma_z$                    | μm                                                | 44      | 44            | 44      |
| IP beam size                        | $\sigma_x/\sigma_y$           | nm                                                | 100/2.6 | $\sim$ 60/1.5 | ~ 40/1  |
| Normalised emittance (end of linac) | $\varepsilon_x/\varepsilon_y$ | nm                                                | _       | 660/20        | 660/20  |
| Normalised emittance                | $\varepsilon_x/\varepsilon_y$ | nm                                                | 660/25  | —             | -7      |
| Estimated power consumption         | Pwall                         | MW                                                | 235     | 364           | 589     |







#### Vol 1: The CLIC accelerator and site facilities

- CLIC concept with exploration over multi-TeV energy range up to 3 TeV Feasibility study of CLIC parameters optimized at 3 TeV (most demanding) - Consider also 500 GeV, and intermediate energy range - https://edms.cern.ch/document/1234244/

Vol 2: Physics and detectors at CLIC

Physics at a multi-TeV CLIC machine can be measured with high precision, despite challenging background conditions External review procedure in October 2011

- http://arxiv.org/pdf/1202.5940v1

#### Vol 3: "CLIC study summary"



Summary and available for the European Strategy process, including possible implementation stages for a CLIC machine as well as costing and cost-drives Proposing objectives and work plan of post CDR phase (2012-16)

- http://arxiv.org/pdf/1209.2543v1

In addition a shorter overview document was submitted as input to the **European Strategy** update, available at: http://arxiv.org/pdf/1208 .1402v1

Input documents to Snowmass 2013 has also been submitted: http://arxiv.org/abs/1305 .5766 and http://arxiv.org/abs/1307 .5288



# Physics at LC from 250 GeV to 3000 GeV

Z'

 $q^*$ 

- Physics case for the Linear Collider:
  - Higgs physics (SM and non-SM)
  - Тор
  - **SUSY**
  - Higgs strong interactions
  - New Z' sector ۲
  - Contact interactions
  - Extra dimensions
  - .... AOP (any other physics) ...

Specific challenges for CLIC studies:

- Need to address Higgs-studies, including gains for measurements at higher energies
- Reach for various "new physics" (list above) options; • comparative studies with HiLumi LHC and proton-proton at higher energies (FCC).

| New particle                                      | LHC (14 TeV) | HL-LHC | CLIC3          |
|---------------------------------------------------|--------------|--------|----------------|
| squarks [TeV]                                     | 2.5          | 3      | ≲1.5           |
| sleptons [TeV]                                    | 0.3          | -      | $\lesssim 1.5$ |
| Z' (SM couplings) [TeV]                           | 5            | 7      | 20             |
| 2 extra dims M <sub>D</sub> [TeV]                 | 9            | 12     | 20-30          |
| TGC (95%) ( $\lambda_{\gamma \text{ coupling}}$ ) | 0.001        | 0.0006 | 0.0001         |
| $\mu$ contact scale [TeV]                         | 15           | -      | 60             |
| Higgs composite scale [TeV]                       | 5–7          | 9–12   | 70             |





# ILC: SCRF Linac Technology









| 1.3 GHz Nb 9-cellCavities       | 16,024 |
|---------------------------------|--------|
| Cryomodules                     | 1,855  |
| SC quadrupole pkg               | 673    |
| 10 MW MB Klystrons & modulators | 436 *  |

\* site dependent

Approximately 20 years of R&D worldwide
→ Mature technology, overall design and cost



# Cryomodule System Tests



### DESY: FLASH

- 1.25 GeV linac (TESLA-Like tech.)
- ILC-like bunch trains:
- ♦ 600 ms, 9 mA beam (2009);
   ♦ 800 ms 4.5 mA (2012)
- ◆ RF-cryomodule string with beam →
   PXFEL1 operational at FLASH





### **KEK: STF/STF2**

- \$1-Global: completed (2010)
- Quantum Beam Accelerator (Inverse Llaser Compton): 6.7 mA, 1 ms ← Demonstrated
- CM1 test with beam (2014 ~2013)
- STF-COI: Facility to demonstrate CM assembly/test in near future



#### **FNAL: ASTA**

(Advanced Superconducting Test Accelerator)

- CM1 test complete
- CM2 operation (2013)
- CM2 with beam (soon)



# Technology: STF cryostring - KEK





2011 disassemble S1-Global,

start construction of STF accelerator(Injector + QB) 2012 Feb: QB accelerator commissioning Apr: beam acceleration Jun: beam focus for Laser-Compton Jul to Mar: experiment of Laser-Compton (QB) 2013 Apr: disassemble Laser-Compton start installation of CM-1 Sep: two set of 4-cavity train completed Oct: Cryomodule assembly in STF tunnel Dec: CM-1 completed 2014 Apr: start CM-2a assembly Jul: CM-1 and CM-2a connection will be completed Oct: Cool-down test



# Technology: STF cryostring - KEK





A High Performance cryostring



| Year | Capable Lab.                        | Capable Industry                  |
|------|-------------------------------------|-----------------------------------|
| 2006 | 1<br>DESY                           | 2<br>ACCEL, ZANON                 |
| 2011 | 4<br>DESY, JLAB, FNAL, KEK          | 4<br>RI, ZANON, AES, MHI,         |
| 2012 | 5<br>DESY, JLAB, FNAL, KEK, Cornell | 5<br>RI, ZANON, AES, MHI, Hitachi |

- One lab (2 vendors) in 2006
- 5 labs (5 vendors) in 2012 (maybe more)



| Category                   | Work-base | Specific subject                                        | Global Collaboration w/                                                       |
|----------------------------|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Positron Source            |           | Positron source                                         | PosiPol Collaboration                                                         |
| Nano Beam                  | ATF       | 37 nm beam<br>2 nm stability                            | ATF collaboration                                                             |
| SCRF Cavity<br>Integration | STF       | Power Input Coupler<br>Tuner<br>He-Vessel               | CERN-DESY-KEK<br>CEA-Fermi/SLAC-KEK<br>DESY-KEK<br>(WS at CERN? Autumn. 2014) |
| CM integration             | STF, ILC  | Conduction-cooled<br>SC Quadrupole                      | Fermilab-KEK                                                                  |
| Cryogenics                 | ILC       | Cryog. Underground<br>He inventry<br>High p. Gas Safety | CERN-Fermilab-KEK<br>(WS at CERN, 18 June)                                    |
| CFS                        | ILC       | CFS design prep.                                        | CERN-Fermilab-KEK                                                             |
| Radiation Safety           | ILC       | ML radiation shield                                     | SLAC-DESY-CERN-KEK                                                            |

# C•

#### LINEAR COLLIDER COLLABORATION

#### Parameters, Design and Implementation

- •Integrated Baseline Design and Parameters
- •Feedback Design, Background, Polarization
- Machine Protection & Operational Scenarios
- •Electron and positron sources
- Damping Rings
- •Ring-To-Main-Linac
- •Main Linac Two-Beam Acceleration
- •Beam Delivery System
- •Machine-Detector Interface (MDI
- Drive Beam Complex
- •Cost, power, schedule, stages

# CLIC main activities (2013-19)

#### X-band Technologies

- •X-band Rf structure Design
- •X-band Rf structure Production
- X-band Rf structure High Power Testing
- •Novel RF unit developments (high efficiency)
- •Creation and Operation of x-band High power Testing Facilities
- Basic High Gradient R&D

#### **Experimental verification**

- Drive Beam phase feed-forward and feedbacks
- •Two-Beam module string, test with beam
- Drive-beam front end including modulator development and injector
- Modulator development, magnet converters
- Drive Beam Photo Injector
- •Low emittance ring tests
- •Accelerator Beam System Tests (ATF and FACET, others)

#### **Technical Developments**

- Damping Rings Superconducting Wiggler
- •Survey & Alignment
- Quadrupole Stability
- •Warm Magnet Prototypes
- •Beam Instrumentation and Control
- •Two-Beam module development
- •Beam Intercepting Devices
- •Controls
- Vacuum Systems

#### **Detector and Physics**

Physics studies and benchmarking
Detector optimisation
Technical developments









Results very good, design/performance more and more understood – but:

- numbers limited, industrial productions also limited
- basic understanding of BD mechanics improving
- condition time/acceptance tests need more work
- use for other applications (e.g. FELs) needs verification
- In all cases test-capacity is crucial





### X-band test-stands



Previous: Scaled 11.4 GHz tests at SLAC and KEK.





**NEXTEF at KEK** 

ASTA at SLAC

- Clockwise from top-left:Modulator/klystron
- Modulator/klystron (50MW, 1.5us pulse)
- Pulse compressor (250ns, ratio 2.8)
- DUT + connections
- Acc. structure (TD26CC)









### X-band test-stands



Previous: Scaled 11.4 GHz tests at SLAC and KEK.





**NEXTEF at KEK** 

ASTA at SLAC

- Clockwise from top-left:Modulator/klystron (50MW, 1.5us pulse)
- Pulse compressor (250ns, ratio 2.8)
- DUT + connections
- Acc. structure (TD26CC)







- - Waveguide network connected to klystron
    - Temporary module with pulse compressor, and load for commissioning

- Diode testing has started to commission modulator
- XL5 klystron installed inside the new modulator







### X-band test-stands



Previous: Scaled 11.4 GHz tests at SLAC and KEK.





**NEXTEF at KEK** 

ASTA at SLAC

- Clockwise from top-left:
  Modulator/klystron (50MW, 1.5us pulse)
- Pulse compressor (250ns, ratio 2.8)
- DUT + connections
- Acc. structure (TD26CC)



- Very significant increase of test-capacity First commercial 12 GHz klystron systems becoming available
- Confidence that one can design for good (and possibly better) gradient performance As a result: now possible to use Xband technology in accelerator systems – at smaller scale

- - - Waveguide network connected to klystron
      - Temporary module with puls compressor, and load for commissioning

- Diode testing has started to commission modulator
- XL5 klystron installed inside the new modulator



- 4 turn-key 6 MW, 11.9942 GHz, 400Hz power stations (klystron/modulator) have been ordered from industry.
- The first unit is scheduled to arrive at CERN in October 2014. The full delivery will be completed before July 2015.

# Example: 360GeV Cost vs. Bunch Charge



N [10<sup>9</sup>]







### Developments for cost/power





First to second stage: 4 MCHF/GeV (i.e. initial costs are very significant)

#### Caveats:

Uncertainties 20-25%

Possible savings around 10%

However - first stage not optimised (work for next phase), parameters largely defined for 3 TeV final stage



Beyond the parameter optimization there are other on-going developments (design/technical developments):

- Use of permanent or hybrid magnets for the drive beam (order of 50'000 magnets)
- Optimize drive beam accelerator klystron system
- Electron pre-damping ring can be removed with good electron injector
- Dimension drive beam accelerator building and infrastructure are for 3 TeV, dimension to 1.5 TeV results in large saving
- Systematic optimization of injector complex linacs in preparation
- Power consumption:
  - Optimize and reduce overhead estimates

#### Goal:

- Rebaseline project at ~350 GeV, ~1.5 TeV, 3 Te
- Optimised cost and power for given luminosity
- End year hopefully needed to redo with new LHC results at some point







![](_page_26_Picture_0.jpeg)

# Technology example: CLIC module

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

- First module is under test, data under evaluation
- For second and third module many components have been received
- Tunnel environment modeled in experimental hall

- Test within laboratory (tunnel model with air flow)
- Test in CTF3 with beam (earlier slide)
- Transport test

![](_page_26_Picture_10.jpeg)

![](_page_26_Figure_11.jpeg)

![](_page_27_Picture_0.jpeg)

### Technology examples: Magnets and Instrumentation

![](_page_27_Picture_2.jpeg)

Magnet developments:

- Main Beam Quadrupole (MBQ)
- Drive Beam Quadrupoles (DBQ)
- Steering correctors

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

- QD0
- SD0

![](_page_27_Picture_13.jpeg)

![](_page_27_Picture_14.jpeg)

Other studies (ILC and ATF studies)

![](_page_27_Picture_16.jpeg)

| ВІ Туре          | CLIC-3-DB | CLIC-3-MB |
|------------------|-----------|-----------|
| Intensity        | 278       | 184       |
| Position         | 46054     | 7187      |
| Size             | 800       | 148       |
| Energy (spread)  | 210 (210) | 73 (23)   |
| Bunch length     | 312       | 75        |
| Beam loss / halo | 45950     | 7790      |
| Beam phase       | 208       | 96        |
| Polarization     |           | 17        |
| Tune             |           | 6         |
| Luminosity       |           | 2         |

![](_page_27_Picture_18.jpeg)

![](_page_27_Picture_19.jpeg)

- Development of OTR/ODR simulation tools well advanced and experimental validation has already shown promising results
- Proposing future beam test at ATF2 of a combined OTR/ODR Linear collider beam size monitor
- EO SD commissioned successfully on Califes with time resolution and S/N ratio better than streak camera
- EO Transposition is currently being studied at Daresbury to provide 20fs resolution bunch length monitor
- R&D on CLIC BPMs is progressing well expecting with 2<sup>nd</sup> generation of BPM prototypes being built now
- CLIC BLM monitor are being tested intensively with the aim to select the best possible sensor with respect to sensitivity, time response and cost

# Performance verifications – example CLIC

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

- i.e. accuracy is approx. 13.5µm

![](_page_28_Picture_5.jpeg)

# Performance verifications – example CLIC

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_0.jpeg)

### Final focus: ATF 2 at KEK

![](_page_30_Figure_2.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

Field quality improvements, orbit stabilisation through feedback, 36 38 40 42 44 46 48 50 shorted turn in 6-pole magnet, beam size monitor improvements

ATF 2 Future program – next Run October

![](_page_32_Picture_0.jpeg)

### **ATF2: Stabilisation Experiment**

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_33_Picture_0.jpeg)

# **ATF2: Stabilisation Experiment**

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_0.jpeg)

# FEL linacs with SCRF modules

![](_page_34_Picture_2.jpeg)

![](_page_34_Figure_3.jpeg)

### CLIC system tests beyond CTF3

- Drive beam development beyond CTF3
  - RF unit prototype with industry using CLIC frequency and parameters
  - Drive beam front-end (injector), to allow development into larger drivebeam facility beyond 2018
- Damping rings
  - Tests at existing damping rings, critical component development (e.g. wigglers) ... large common interests with light source laboratories
- Main beam (see slides later)
  - Steering tests at FACET, FERMI, ...
- Beam delivery system (see slide later)
  - ATF/ATF2

![](_page_35_Figure_10.jpeg)

ALS (Australia) ...

# Xband facilities - FELs

![](_page_36_Picture_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

- X-band technology appears interesting for compact, relatively low cost FELs new or extensions
  - Logical step after S-band and C-band
  - Example similar to SwissFEL: E=6 GeV, Ne=0.25 nC,  $\sigma_z$ =8µm
- Use of X-band in other projects will support industrialisation
  - They will be klystron-based, additional synergy with klystronbased first energy stage
- Started to collaborate on use of X-band in FELs
  - Australian Light Source, Turkish Accelerator Centre, Elettra, SINAP, Cockcroft Institute, TU Athens, U. Oslo, Uppsala University, CERN
- Share common work between partners
  - Cost model and optimisation
  - Beam dynamics, e.g. beam-based alignment
  - Accelerator systems, e.g. alignment, instrumentation...
- Define common standard solutions
  - Common RF component design, -> industry standard
  - High repetition rate klystrons (500Hz soon to be ordered for CLIC)

![](_page_36_Picture_18.jpeg)

Great potential for collaboration (G.D'Auria et al., "X-band technology for FEL sources")

![](_page_37_Picture_0.jpeg)

# **ILC** Timeline

![](_page_37_Picture_2.jpeg)

- 2013 2016
  - Accelerator detailed design, R&Ds for cost-effective production, site study, CFS designs etc.
  - Negotiations among governments
  - Prepare for the international lab.
- 2016 2018
  - 'Green-sign' for the ILC construction to be given (in ea 2016)
  - International agreement reached to go ahead with the ILC
  - Formation of the ILC lab.
  - Preparation for biddings etc.
- 2018
  - Construction start (9 yrs)
- 2027
  - Construction (500 GeV) complete, (and commissioning start)

(250 GeV time-scale is slightly shorter)

### Science Council

 MEXT asked SCJ to evaluate ILC on four points
 I) Scientific significance of the research using ILC, and the positioning of ILC project in the context of particle physics.

- Positioning of ILC Project in the context of overall scientific activity in Japan.
- 3) Significance of hosting ILC for Japanese people and society.
- Current state of preparation and necessary conditions for the implementation of ILC project, including securement of budget and manpower for construction and operation of ILC.

![](_page_38_Picture_0.jpeg)

# **ILC Accelerator Organization**

![](_page_38_Picture_2.jpeg)

| LCC-ILC Direc                                           | tor: M. Harrison, Deputie                             | *KEK LC Project Office He     | ead: A. Yamamoto                           |                                                                                                     |                                  |
|---------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|
| Sub-Group                                               | <u>Global Leader</u><br>Deputy/Contact p.             | <u>KEK-Leader*</u><br>Deputy  | Sub-Group                                  | Global Leader<br>Deputy/Contact P.                                                                  | <u>KEK-Leader*</u><br>Deputy     |
| Acc. Design<br>Integr.                                  | <u>N. Walker (DESY)</u><br>K. Yokoya(KEK)             | <u>K. Yokoya</u>              | SRF                                        | <u>H. Hayano (KEK)</u><br>C. Ginsburg (Fermi),<br>E. Montesinos (CERN)                              | <u>H. Hayano</u><br>Y. Yamamoto  |
| <b>Sources</b><br>(e-, e+)                              | <u>W. Gai (ANL)</u><br>M. Kuriki (Hiroshima U.)       | <u>J. Urakawa</u><br>T. Omori | RF Power & Cntl                            | <u>S. Michizono (KEK)</u><br>TBD (AMs , EU)                                                         | <u>Michizono</u><br>T. Matsumoto |
| Damping<br>Ring                                         | D. Rubin (Cornell)<br>N. Terunuma (KEK)               | <u>N. Terunuma</u>            | <b>Cryogenics</b><br>(incl. HP gas issues) | <ul> <li><u>H. Nakai: KEK</u></li> <li>T. Peterson (Fermi),</li> <li>D. Delikaris (CERN)</li> </ul> | <u>H. Nakai</u><br>Cryog. Center |
| RTML                                                    | <u>S. Kuroda (KEK)</u><br>A. Latina (CERN)            | <u>S. Kuroda</u>              | CFS                                        | <u>A. Enomoto (KEK)</u><br>V. Kuchler (Fermi),<br>J. Osborne (CERN),                                | <u>A. Enomoto</u><br>M. Miyahara |
| <b>Main Linac</b><br>(incl. B. Compr.<br>& B. Dynamics) | <u>N. Solyak (Fermi)</u><br>K. Kubo (KEK)             | <u>K. Kubo</u>                | Radiation Safety                           | <u>T. Sanami (KEK)</u><br>TBD (AMs, EU)                                                             | <u>T. Sanami</u><br>T. Sanuki    |
| BDS                                                     | G. White (SLAC),<br>R. Tomas (Cern)<br>T. Okugi (KEK) | <u>T. Okugi</u>               | Electrical Support<br>(Power Supply etc.)  | TBD                                                                                                 | <u>TBD</u>                       |
| MDI                                                     | K. Buesser (DESY)<br>T. Tauchi (KEK)                  | <u>T. Tauchi</u>              | Mechanical S.<br>(Vac. & others)           | TBD                                                                                                 | <u>TBD</u>                       |
|                                                         |                                                       |                               | Domestic Program,<br>Hub Lab. Facilities   | TBD                                                                                                 | <u>H. Hayano</u><br>T. Saeki     |

![](_page_39_Picture_0.jpeg)

### Site specific studies

Establish a site-specific Civil Engineering Design - map the (site independent) TDR baseline onto the preferred site - assuming "Kitakami" as a primary candidate

![](_page_39_Figure_3.jpeg)

![](_page_40_Picture_0.jpeg)

### ILC preferred site - Kitakami

![](_page_40_Picture_2.jpeg)

al

![](_page_40_Picture_3.jpeg)

![](_page_40_Figure_4.jpeg)

30km

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_2.jpeg)

### Current Status: Facility Planning Progress – CFS View

|                            | Underground Facilities |     |     |     | Surfa | ace Faci | lities |    |
|----------------------------|------------------------|-----|-----|-----|-------|----------|--------|----|
| Work                       | ML                     | AH  | DR  | BDS | DH    | AY       | CS     | CC |
| Facility Arrangement       | B/C                    | B/C | С   | С   | B/C   | D        | С      | D  |
| Basic Shape, Dimension     | B/C                    | B/C | B/C | С   | B/C   | D        | С      | D  |
| Civil/Architectural Design | С                      | С   | С   | C/D | С     | D        | С      | D  |
| Electronic Design          | С                      | С   | С   | C/D | С     | D        | С      | D  |
| Mechanical Design          | С                      | С   | С   | C/D | С     | D        | С      | D  |

#### Legend: Progress degree

|   | Requirement  | Technical Study    |
|---|--------------|--------------------|
| Α | Clear        | Completed          |
| В | Clear        | Under study        |
| С | Unclear(50%) | Partially executed |
| D | Unclear      | Not yet started    |

#### Legend: Facility

|    | Technical Study    |
|----|--------------------|
| AH | Access Hall        |
| AY | Access Yard        |
| CS | Central Substation |
| СС | Central Campus     |

From Miyahara et al

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_2.jpeg)

### Current Status: Facility Planning Progress – CFS View

![](_page_42_Figure_4.jpeg)

![](_page_43_Picture_0.jpeg)

# **CLIC** perspective

![](_page_43_Picture_2.jpeg)

#### 2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

![](_page_43_Figure_5.jpeg)

#### 2018-19 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects as FCC), take decisions about next project(s) at the Energy Frontier.

#### 4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

![](_page_43_Figure_11.jpeg)

#### 2024-25 Construction Start

Ready for full construction and main tunnel excavation.

#### **Construction Phase**

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

![](_page_43_Figure_17.jpeg)

#### Commissioning

Becoming ready for datataking as the LHC programme reaches completion.

![](_page_44_Figure_0.jpeg)

# **CLIC Collaboration**

![](_page_44_Picture_2.jpeg)

#### 29 Countries – over 70 Institutes

![](_page_44_Figure_4.jpeg)

Seven new collaboration partners joined in 2013 (The Hebrew University Jerusalem, Vinca Belgrade, ALBA/CELLS, Tartu University, NCBJ Warsaw, Shandong University, Ankara University Institute of Accelerator Technologies (IAT)). In 2014 two (SINAP Shanghai and IPM Tehran) more

Detector collaboration operative with 23 institutes

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

untries – over 70 Institutes

![](_page_45_Picture_7.jpeg)

![](_page_46_Picture_0.jpeg)

# Key points

The ILC and CLIC accelerator studies are organised under the heading of LCC with goals:

- Strongly support the Japanese initiative to construct a linear collider as a staged project in Japan
- Prepare CLIC machine and detectors as an option for a future high-energy linear collider at CERN
- Further improve collaboration between CLIC and ILC machine experts
- Beyond the significant progress on the basic RF studies, increased and successful effort on system-studies of various types (FACET, ATF, etc)
- Many common challenges with 3<sup>rd</sup> generation light sources and FELs, the latter providing very important industrial/lab production experiences

![](_page_47_Picture_0.jpeg)

# Thanks

- Slides/figures from LCC collaboration members and others
- Knowingly from M.Harrison, A.Yamamoto, A. Latina, K.Kubo and ATF colleagues, D.Schulte, Y.Yamamoto, W.Fang, W.Wuensch and Xband team, M. Miyahara, N.Walker, T.Lefevre, M.Modena, R.Tomas, G.D'Auria ... probably several more unknowingly