

AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Edda Gschwendtner on behalf of the AWAKE Collaboration

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven wakefield experiment worldwide
 - First beam expected in 2016
- AWAKE Collaboration: 14 Institutes world-wide

Motivation

- Accelerating field of today's RF cavities or microwave technology is **limited to <100 MV/m**
 - Several tens of kilometers for future linear colliders
- Plasma can sustain up to three orders of magnitude much higher gradient
 - SLAC (2007): electron energy doubled from 42GeV to 85 GeV over 0.8 m \rightarrow 52GV/m gradient

Why protons?

- Energy gain is limited by energy carried by the laser or electron drive beam (<100J) and the propagation length of the driver in the plasma (<1m).
 - **Staging** of large number of acceleration sections required to reach 1 TeV region.
- **Proton beam carry much higher energy**: 19kJ for 3E11 protons at 400 GeV/c.
 - Drives wakefields over much longer plasma length, only 1 plasma stage needed.

Simulations show that it is possible to gain 600 GeV in a single passage through a 450 m long plasma using a 1 TeV p+ bunch driver of 10e11 protons and an rms bunch length of 100 μ m.

Motivation

 \rightarrow deceleration

- Plasma wave is excited by a relativistic particle bunch
- Space charge of drive beam displaces plasma electrons.
- Plasma electrons attracted by plasma ions, and rush back on-axis ightarrow acceleration
- → plasma wavelength λ_p =1mm, (for typical plasma density of $n_p = 10^{15} \text{ cm}^{-3}$)
- → To excite large amplitude wakefields, proton bunch length $\sigma_z \sim \lambda_p$ = 1mm

SPS beam: σ_z ~12cm

→ Way out: Self-Modulation Instability (SMI):

Modulate long SPS bunch to produce a series of 'micro-bunches' in a plasma with a spacing of plasma wavelength λ_p .

- ightarrow Strong self-modulation effect of proton beam due to transverse wakefield in plasma
- \rightarrow Starts from any perturbation and grows exponentially until fully modulated and saturated.

→ Immediate use of CERN SPS beam

Outline

• Motivation

• AWAKE at CERN

- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE at CERN

AWAKE at CERN

- Running underground facility
- Desired beam parameters
- → adequate site for AWAKE

AWAKE at CERN

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

- Perform **benchmark experiments using proton bunches** to drive wakefields for the first time ever.
- Understand the physics of self-modulation instability processes in plasma.

- Perform **benchmark experiments using proton bunches** to drive wakefields for the first time ever.
- Understand the physics of self-modulation instability processes in plasma.

- \rightarrow SPS proton bunch experiences **Self-Modulation Instability** (SMI) in the plasma.
- → Laser ionizes the plasma and seeds the SMI in a controlled way.
- → 10 m long plasma cell: **Rubidium vapor** source, $n_e = 7x10^{14}$ cm⁻³.

Proton Beam				
Momentum	400 GeV/c			
Protons/bunch	3 10 ¹¹			
Bunch extraction frequency	0.5 Hz (ultimate: 0.14 Hz)			
Bunch length	σ_z = 0.4 ns (12 cm)			
Bunch size at plasma entrance	σ [*] _{x,y} = 200 μm			
Normalized emittance (r.m.s.)	3.5 mm mrad			
Relative energy spread	∆p/p = 0.35%			
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 4.9 \text{m}$			
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$			

Laser Beam					
Laser type	Fiber Ti:Sapphire				
Pulse wavelength	λ ₀ = 780 nm				
Pulse length	100-120 fs				
Pulse energy (after compr.)	450 mJ				
Laser power	2 TW				
Focused laser size	σ _{x,y} = 1 mm				
Energy stability	±1.5% r.m.s.				
Repetition rate	10 Hz				

- Laser and proton beam synchronized at the **100 ps level**.
 - Laser and proton beam **co-axial** over the full length of the plasma cell:
 - 100μm and 15 rad pointing accuracy
 - High resolution diagnostics to perform and monitor relative alignment
 - Plasma density uniformity better than 0.2%

Maximum amplitude of the accelerating field E_z as a function of position along the plasma. Saturation of the SMI at ~4m.

- Laser and proton beam synchronized at the **100 ps level**.
 - Laser and proton beam **co-axial** over the full length of the plasma cell:
 - 100 μ m and 15 μ rad pointing accuracy
 - High resolution diagnostics to perform and monitor relative alignment
 - Plasma density uniformity better than 0.2%

Self-modulated proton bunch

resonantly driving plasma wakefields.

- Laser and proton beam synchronized at the **100 ps level**.
 - Laser and proton beam **co-axial** over the full length of the plasma cell:
 - 100µm and 15 rad pointing accuracy
 - High resolution diagnostics to perform and monitor relative alignment
 - Plasma density uniformity better than 0.2%

Self-modulated proton bunch resonantly driving plasma

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

• **Probe the accelerating wakefields with externally injected electrons**, including energy spectrum measurements for different injection and plasma parameters.

• **Probe the accelerating wakefields with externally injected electrons**, including energy spectrum measurements for different injection and plasma parameters.

Electron beam					
Momentum	16 MeV/c				
Electrons/bunch (bunch charge)	1.2 E9 (0.2 nC)				
Bunch length	σ _z =4ps (1.2mm)				
Bunch size at focus	σ [*] _{x,y} = 250 μm				
Normalized emittance (r.m.s.)	2 mm mrad				
Relative energy spread	$\Delta p/p = 0.5\%$				
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 0.4 \text{ m}$				
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$				

Laser beam for electron source					
Laser type	Ti:Sapphire Centaurus				
Pulse wavelength	λ ₀ = 260 nm				
Pulse length	10 ps				
Pulse energy (after compr.)	500 μJ				
Electron source cathode	Copper				
Quantum efficiency	3.00 E-5				
Energy stability	±2.5% r.m.s.				

- Laser and electron beam synchronized at the < 1 ps level.
- **Electron bunch is externally injected** into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

On-axis injection: animation of trapping and acceleration

black points - injected electrons, false colors - wakefield potential

•Electrons are trapped from the very beginning by the wakefield of seed perturbation

- •Trapped electrons make several synchrotron oscillations in their potential wells
- •After z=4 m the wakefield moves forward in the light velocity frame

- Laser and electron beam synchronized at the < 1 ps level.
- Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

Energy of the electrons gained along the 10 m long plasma cell.

- protons
 - Laser and electron beam synchronized at the < 1 ps level.
 - Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

- Trapping efficiency: **10 15 %**
- Average energy gain: 1.3 GeV
- Energy spread: ± 0.4 GeV
- Angular spread up to \pm 4 mrad

Large acceptance spectrometer (aperture and magnetic field)

AWAKE Experimental Layout: 2nd Phase

- Laser and electron beam synchronized at the < 1 ps level.
- Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

- Trapping efficiency: 10 15 %
- Average energy gain: 1.3 GeV
- Energy spread: ± 0.4 GeV
- Angular spread up to \pm 4 mrad

Large acceptance spectrometer (aperture and magnetic field)

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE Experimental Facility at CERN

Laser System

Ti: Sapphire laser system:

- Laser with 2 beams (for plasma and e-gun)
- Delay line in either one of both beams
- Focusing telescope (lenses, in air) before compressor
- 35 meter focusing
- Optical compressor (in vacuum)
- Optical in-air compressor and 3rd harmonics generator for electron gun

Complete UHV vacuum system up to 10⁻⁹ mbar starting from optical compressor

New tunnel

Proton Beam Line

Change of the proton beam line only in the downstream part (~80m)

Present CNGS Layout (end of the line)

Laser-proton merging 20m upstream the plasma cell

→ Displace existing magnets of the final focusing to fulfill optics requirements at plasma cell
→ Move existing dipole and 4 additional dipoles to create a

→ Move existing dipole and **4 additional dipoles** to create a **chicane for the laser mirror** integration.

Rubidium Vapour Plasma Cell

 $\Delta n/n = \Delta T/T \leq 0.002$

- Density adjustable from 10¹⁴ 10¹⁵ cm⁻³
- 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb vapour using laser pulse (~1.7 10¹² W/cm²)
- − System is oil-heated \rightarrow keep temperature uniformity \rightarrow density uniformity

Ultra-fast (15 ms) valves > 40 000 cycles!

3m prototype

Temperature profiles along the heat exchanger Measurements remain < \pm 0.1 K

Self-Modulation-Instability Diagnostics

Measure the **characteristics of the proton** beam after propagating through the plasma cell.

- Optical Transition Radiation (OTR):
 - Time-resolve bunch radius variation with streak-camera (~100fs resolution)
 - Measure relative phasing of laser pulse, proton bunch and electron bunch
- Coherent Transition Radiation (CTR) and Transverse Coherent Transition Radiation (TCTR)
 - High frequency (${}^{r}f_{p} = 237.5 \text{ GHz}$)
 - Broadband detection scheme (500 GHz)

Electron – Source

- Baseline:
 - Photo injector (**PHIN**) from CTF2 at CERN (5 MeV electrons)
 - Klystron and modulator from CTF3
 - Booster from Cockcroft/Lancaster 5 MeV → 20 MeV
- Optimize and test performance of complex system.
 - use as test area after 2015.

Length ~ 4 m

Electron Beam Line

- Completely new beam line and tunnel:
 - Horizontal angle of 60 deg,
 - − 20% slope of the electron tunnel \rightarrow 1m level difference
 - 7.2% slope of the plasma cell
 - ~5 m common beam line between electron and proton
- **Common diagnostics** for proton (high intensity, 3E11 p) and electron beam (low intensity, 1.2E9 e)
- Flexible electron beam optics: focal point can be varied by up to 6 m inside the plasma cell

Electron Beam Line

Status 4 weeks ago

Electron Beam Line

Status 1 week ago

Electron Spectrometer

- Measure **peak energy and energy spread** of electrons.
- Spectrometer magnet separates electrons from proton beam-line.
- Dispersed electron impact on scintillator screen.
- Resulting light collected with intensified CCD camera.

MBPS magnet (CERN): 15 ton 1.84 T, 3.80 Tm Vert. aperture: 110-200 mm Horiz. Aperture: 300 mm L=1670 mm, W=1740 mm

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

Planning

	20	13	2014	2015	2016)	2017		2018	2019	2020
Proton beam- line			Installation Study, Design, Procurement, Component preparation			Comm. Data taking		ing	LS2 18 months		Data taking
Experimental area			Modification, Civil Engineering and installation Study, Design, Procurement, Component preparation				Phase 2	1			
Electron source and beam-line			Studies, design	Fab	rication		Installation	ning	Phase	2	

- AWAKE was approved in August 2013
- 1st Phase: First proton and laser beam in 2016
- **2nd Phase:** first electron beam in 2017
- Physics program for 3 4 years

Run-scenario	Nominal
Number of run-periods/year	4
Length of run-period	2 weeks
Total number of beam shots/year (100% efficiency)	162000
Total number of protons/year	4.86×10 ¹⁶ p
Initial experimental program	3 – 4 years

Next Steps

- **Split-cell mode**: SMI in 1st plasma cell, acceleration in 2nd one.
- New scalable uniform plasma cells (helicon or discharge plasma cell)
- Step in the plasma density \rightarrow maintains the peak gradient
- Need ultra-short electron bunches (> 300fs) \rightarrow bunch compression \rightarrow Almost 100% capture efficiency

Summary

- AWAKE is proof-of-principle accelerator R&D experiment currently being built at CERN.
 - First proton-driven wakefield acceleration experiment
 - The experiment opens a pathway towards plasma-based TeV lepton collider.
 - 400 GeV SPS proton beam as drive beam
 - 10-20 MeV electrons as witness beam
 - 2 TW laser beam for plasma ionization and seeding of the SMI
- AWAKE program
 - Study the physics of self-modulation instability as a function of plasma and proton beam parameters (1st Phase, 2016)
 - Probe the longitudinal accelerating wakefields with externally injected electrons (2nd Phase, 2017-2018)
 - Develop long scalable and uniform plasma cells, production of shorter electron and proton bunches (2020)

