Challenges toward attosecond and zeptosecond XFELs

Takashi TANAKA RIKEN SPring-8 Center

Outline

- Introduction
- Sub-TW & Few-fs XFEL at SACLA
- Toward Atto- & Zeptosecond XFEL

Outline

- Introduction
- Sub-TW & Few-fs XFEL at SACLA
- Toward Atto- & Zeptosecond XFEL

Ultimate Form of Lasers

Laser Profile in Time & Space

Laser Pulse Lengths as of Today

Compressing the Laser Pulse

- Pulse compression is a normal technique in optical lasers (T³ laser)
 - Ultra-short pulse (a few cycles)
 - High peak power (TW level)
- How about in XFELs?
 - Traditional scheme with optics seems challenging
 - Strong compression of the e- beam
 - A number of techniques for "pulse shortening"

Outline

- Introduction
- Sub-TW & Few-fs XFEL at SACLA
- Toward Atto- & Zeptosecond XFEL

SACLA: Japan's XFEL Facility

SACLA: <u>SPring-8</u> <u>Angstrom</u> <u>Compact free electron</u> <u>LA</u>ser

SACLA: Japan's XFEL Facility

SACLA: <u>SPring-8</u> <u>Angstrom</u> <u>Compact free electron</u> <u>LA</u>ser

SACLA: Japan's XFEL Facility

SPring-8 **Thermionic E-Gun** Undulator SACLAC-band Accelerator Accelerator EE In-Vacuum Undulator SACLA: SPring-8 Angstrom Compact free electron LAser

Short-Pulse & High-Power XFEL@SACLA

- A lot of efforts have been made at SACLA in order to
 - improve the stability by upgrading the accelerator hardware
 - enhance the laser intensity by optimizing the beam parameters
- As a result, strongly-compressed ebeam is available in nominal operation

Generation of Sub-TW & Few-fs XFEL Pulse

Gain Curve Measurement

Gain Curve Measurement

Gain Curve Measurement

Autocorrelation Measurement

Autocorrelation Measurement

Deduction of the Bunch Profile

Estimation of the XFEL Pulse

Estimation of the XFEL Pulse

Outline

- Introduction
- Sub-TW & Few-fs XFEL at SACLA
- Toward Atto- & Zeptosecond XFEL

How to Further Shorten the XFEL Pulse ?

- To attain atto- and zeptoseconds pulse, we need to
 - further compress the e- bunch
 - introduce alternative schemes
- New XFEL schemes have been proposed
 - Local current enhancement (E-SASE)
 - Mode locking (Ultra-short Pulse Train)
 - E-SASE combined with selective & sequential amplification (XFEL pulse compression)

XFEL Pulse Compression*

*T. Tanaka, PRL 110, 084801 (2013)

XFEL Pulse Compression*

*T. Tanaka, PRL 110, 084801 (2013)

XFEL Pulse Compression*

Evolution of a Solitary Pulse

25

Improvement of Contrast

Improvement of Contrast

Example of Improvement

29

Toward "Ultimate" X-ray Laser?

Toward "Ultimate" X-ray Laser?

Outlook: toward ZS XFEL

- How?
 - Extending the mode-lock operation ("afterburner", sub-as pulse train) [1]
 - Taking advantage of dispersive elements (multilayers) for pulse compression [2]

>Other schemes yet to be proposed?

• Why?

New light source has always opened up a new frontier!

Thank you for attention!