Paper |
Title |
Other Keywords |
Page |
TUIOA03 |
The MAX IV Linac |
linac, gun, electron, injection |
400 |
|
- S. Thorin, J. Andersson, F. Curbis, M. Eriksson, O. Karlberg, D. Kumbaro, E. Mansten, D.F. Olsson, S. Werin
MAX-lab, Lund, Sweden
|
|
|
The MAX IV linac will be used both for injection and top up into two storage rings, and as a high brightness injector for a Short Pulse Facility (SPF). The linac has also been deigned to handle the high demands of an FEL injector. In the storage ring injection mode, the linac is operated at 10 Hz with a thermionic RF gun and the electron bunches are kicked out from the linac at either 3 GeV or 1.5 GeV to reach the respective storage ring. For the Short Pulse mode the linac will operate at 100 Hz with a high brightness photo cathode gun. Compression is done in two double achromats with positive R56 and the natural second order momentum compaction, T566, from the achromats is used together with weak sextupoles to linearise longitudinal phase space, leaving no need for a linearising harmonic cavity. The achromat design for bunch compression produces very short, high peak power electron pulses, while minimizing emittance increase. In this paper we present the MAX IV linac design and the status of commissioning which started in March 2014.
|
|
|
Slides TUIOA03 [4.202 MB]
|
|
|
TUPP105 |
Storage Ring as a Linac Beam Monitor – Its Operation and Contribution to the Stable Top-up Injection |
linac, injection, timing, synchrotron |
668 |
|
- Y. Shoji
LASTI, Hyogo, Japan
- T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, Y. Minagawa, A. Mizuno, T. Shinomoto, S. Suzuki, Y. Takemura, T. Taniuchi, K. Yanagida
JASRI/SPring-8, Hyogo-ken, Japan
|
|
|
We have used the electron storage ring, NewSUBARU, as a beam monitor of the SPring-8 linac. The time and transverse profiles of the injected linac beam are recorded in a frame of a dual-sweep streak camera. A measurements through synchrotron or betatron oscillation in the ring gives multi-dimensional beam structure. The system functions as a final check of the linac beam. It gives the time profile and energy profile or transverse emittance, which includes Twiss parameters. It measures parameters of one linac bunch in a long macro pulse. A shot-by-shot measurement gives beam fluctuations. We report how we use the system and its contribution to the stable top-up operation. The beam loading effect on the bunch energy was obtained by bunch-by-bunch energy profile measurements. It confirmed the optimization of the ECS (Energy Compression System) parameters. The single shot bunch-by-bunch vertical emittance measurement proved the difference between the front bunch and the following bunches. The same measurement showed a timing jitter of the electron gun pulse although the rf synchronization was perfect. This jittering had made the injection efficiency unstable.
|
|
|