Keyword: recirculation
Paper Title Other Keywords Page
TUPP075 The First Beam Recirculation and Beam Tuning in the Compact ERL at KEK linac, operation, emittance, quadrupole 599
 
  • S. Sakanaka, M. Adachi, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, O.A. Konstantinova, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki, Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
  • A. Valloni
    CERN, Geneva, Switzerland
 
  Superconducting(SC)-linac-based light sources, which can produce ultra-brilliant photon beams in CW operation, are attracting worldwide attention. In KEK, we have been conducting R&D efforts towards the energy-recovery-linac(ERL)-based light source* since 2006. To demonstrate the key technologies for the ERL, we constructed the Compact ERL (cERL)** from 2009 to 2013. In the cERL, high-brightness CW electron beams are produced using a 500-kV photocathode DC gun. The beams are accelerated using SC cavities, transported through a recirculation loop, decelerated in the SC cavities, and dumped. In the February of 2014, we succeeded in accelerating and recirculating the CW beams of 4.5 micro-amperes in the cERL; the beams were successfully transported from the gun to the beam dump under energy recovery operation in the main linac. Then, precise tuning of beam optics and diagnostics of beam properties are under way. We report our experience on the beam commissioning, as well as the results of initial measurements of beam properties.
* N. Nakamura, IPAC2012, TUXB02.
** S. Sakanaka et al., IPAC2013, WEPWA015.
 
 
TUPP135 Beam Dynamics Calculations and Magnet Design for Future Measurements of Transverse Beam Break-Up at the S-DALINAC* electron, linac, experiment, sextupole 729
 
  • F. Hug, M. Arnold, L.E. Jürgensen, T. Kürzeder, N. Pietralla, M. Schilling
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Work supported by the BMBF through 05K13RDA
The superconducting electron accelerator S-DALINAC at TU Darmstadt produces c.w. electron beams of up to 90 MeV. The S-DALINAC consists of a SC 14-MeV injector linac, a SC main linac and two recirculation paths. Currently a third recirculation is in its final design phase and will be constructed end 2014 in order to achieve an energy of 130 MeV in future. The main linac houses eight 20-cell SRF cavities operated at 3 GHz and 2 K. Due to the occurance of transverse beam break-up, the highest stable beam current obtained so far amounts to 5 μA only, which is below the design beam current of 20 μA but sufficient for the nuclear physics experiments carried out at Darmstadt since 1991. In this work we will present beam-dynamics calculations and newly designed magnets for planned experiments at the S-DALINAC in order to benchmark different strategies of increasing the threshold current for beam break-up.