Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPP049 | Dipole Kick due to Geometry Asymmetries in HWR for PXIE | cavity, dipole, linac, cryomodule | 165 |
|
|||
Funding: Work supported by D.O.E. Contract No. DE-AC02-07CH11359 Project X Injector Experiment (PXIE) will have a family of half wave resonators having frequency=162.5 MHz and beta optimal=0.11. During cavity production, when the niobium parts are assembled and welded together, it is fundamental to control the frequency of the accelerating mode in order to meet the specified operating value. For the HWR of PXIE the tuning will be achieved by trimming one end of the resonator only, this will introduce unwanted asymmetry in the cavity geometry leading to a dipole kick for the particles traveling through the cavity. The cavity geometry will be different from the ideal, once the cavity is assembled, because of small misalignment of the niobium parts and because of the welding shrinkage. Misalignments of the inner conductor and the beam pipes can be expected. The asymmetry due to tuning process along with production misalignments, have been simulated and the equivalent dipole kick has been calculated. |
|||
![]() |
Poster MOPP049 [1.441 MB] | ||
MOPP117 | Multipole and Field Uniformity Tailoring of a 750 MHz RF Dipole | dipole, cavity, survey, emittance | 326 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependency is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations. |
|||
TUPP062 | A Rebunching CH Cavity for Intense Proton Beams | linac, quadrupole, cavity, simulation | 566 |
|
|||
Funding: Project supported by the EU, FP7 MAX, Contract No. 269565 The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is currently under construction at the Goethe-University in Frankfurt am Main (Germany). A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final proton energy as well as for focusing the bunch longitudinally to compensate huge space charge forces at currents up to 200 mA at the final stage of extension. High current beam dynamic simulations have been performed. They include benchmarking of different beam dynamic codes like LORASR and TraceWin, as well as validating the results by measurements. Detailed examination of multipole field impact, due to the cavity’s geometry, together with error tolerance studies and thermal simulations are also performed. Furthermore, this CH rebuncher serves as a prototype for rt CH cavities at MYRRHA (Belgium), an Accelerator Driven System for transmutation of high level nuclear waste. After copper plating the cavity, RF conditioning will start soon. |
|||
![]() |
Poster TUPP062 [6.015 MB] | ||
THPP086 | ESS DTL Error Study | emittance, DTL, linac, dipole | 1047 |
|
|||
The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. The error study is decisive to define the DTL manufacturing tolerances and to evaluate its robustness. In this paper the DTL performances are shown. | |||