Author: Zhang, M.
Paper Title Page
MOPP132 Development of a Micro-Pulse Electron Gun Based Upon pi-Mode Dual-Cavity 367
 
  • L. Liao, Q. Gu, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
 
  The concept of a novel micro-pulse electron gun (MPG) based upon pi-mode dual-cavity is proposed and analyzed in this paper, and we termed it as dual-cavity micro-pulse electron gun (D-MPG) as compared to single-cavity standard MPG. From simulations, it is clear that the D-MPG is capable of yielding dozens of ampere peak currents and a few ps bunch length. Thought the mechanism for dual cavity is not fully understand, the D-MPG has demonstrate the potential to be the injectors for FEL and THz radiation facilities. Also it is a good candidate to replace the thermal cathode for industrial and medical accelerator system because of the cost-effective of the D-MPG.  
 
TUPP127 R&D of X-band Accelerating Structure for Compact XFEL at SINAP 715
 
  • W. Fang, Q. Gu, M. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.J. Bocchetta, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • E.N. Gazis
    National Technical University of Athens, Athens, Greece
  • A. Grudiev, A. Latina, D. Schulte, S. Stapnes, W. Wuensch
    CERN, Geneva, Switzerland
 
  One compact hard X-ray FEL facility is being planned at SINAP, and X-band high gradient accelerating structure is the most competetive scheme for this plan. X-band accelerating structure is designed to switch between 60MV/m and 80MV/m, and carries out 6GeV and 8GeV by 130 meters linac respectively. In this paper, brief layout of compact XFEL will be introduced, and in particular the prototype design of dedicated X-band acceleration RF system is also presented.