Author: Yoshida, M.
Paper Title Page
MOIOB03 Generation and Acceleration of Low-Emittance, High-Current Electron Beams for SuperKEKB 21
 
  • M. Yoshida, N. Iida, S. Kazama, T. Natsui, Y. Ogawa, S. Ohsawa, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
 
  KEK e/e+ linac is now in a final stage of upgrade for SuperKEKB. One of the key issues is to stably generate and accelerate a low-emittance, high charge  electron beam for SuperKEKB (a couple of single-bunched beams with a charge of 5 nC and a normalized emittance of 20 mm-mmrad each).  
slides icon Slides MOIOB03 [3.981 MB]  
 
TUPP075 The First Beam Recirculation and Beam Tuning in the Compact ERL at KEK 599
TUPOL01   use link to see paper's listing under its alternate paper code  
 
  • S. Sakanaka, M. Adachi, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, O.A. Konstantinova, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki, Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
  • A. Valloni
    CERN, Geneva, Switzerland
 
  Superconducting(SC)-linac-based light sources, which can produce ultra-brilliant photon beams in CW operation, are attracting worldwide attention. In KEK, we have been conducting R&D efforts towards the energy-recovery-linac(ERL)-based light source* since 2006. To demonstrate the key technologies for the ERL, we constructed the Compact ERL (cERL)** from 2009 to 2013. In the cERL, high-brightness CW electron beams are produced using a 500-kV photocathode DC gun. The beams are accelerated using SC cavities, transported through a recirculation loop, decelerated in the SC cavities, and dumped. In the February of 2014, we succeeded in accelerating and recirculating the CW beams of 4.5 micro-amperes in the cERL; the beams were successfully transported from the gun to the beam dump under energy recovery operation in the main linac. Then, precise tuning of beam optics and diagnostics of beam properties are under way. We report our experience on the beam commissioning, as well as the results of initial measurements of beam properties.
* N. Nakamura, IPAC2012, TUXB02.
** S. Sakanaka et al., IPAC2013, WEPWA015.
 
 
TUPP106 RF Characteristics of 20K Cryogenic 2.6-cell Photocathode RF-gun Test Cavity 671
 
  • T. Sakai, M. Inagaki, K. Nakao, K. Nogami, T. Tanaka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • T.S. Shintomi
    Nihon University, Tokyo, Japan
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
The cryogenic C-band photocathode RF gun operating at 20K is under development at LEBRA in Nihon University. The RF gun is of the BNL-type 2.6-cell pillbox cavity with the resonant frequency of 5712 MHz. The 6N8 high purity OFC copper is used as the cavity material. From the theoretical evaluation of the anomalous skin effect, the quality factor Q of the cavity has been expected to be about 60000. Considering a low cooling capacity of the cryocooler system, initial operation of the RF gun is assumed at a duty factor of 0.01 %. The cavity basic design and the beam bunching simulation were carried out using SUPERFISH and General Particle Tracer (GPT). Machining of the cavity was carried out in KEK. The RF characteristics measured at room temperature and 20K will be reported.