Paper |
Title |
Page |
TUPP033 |
Effect of Beam-Loading on the Breakdown Rate of High Gradient Accelerating Structures |
499 |
TUPOL08 |
|
|
- J.L. Navarro Quirante, R. Corsini, A. Degiovanni, S. Döbert, A. Grudiev, O. Kononenko, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, F. Tecker, L. Timeo, B.J. Woolley, X.W. Wu, W. Wuensch
CERN, Geneva, Switzerland
- O. Kononenko
SLAC, Menlo Park, California, USA
- A. Solodko
JINR, Dubna, Moscow Region, Russia
- J. Tagg
National Instruments Switzerland, Ennetbaden, Switzerland
- B.J. Woolley
Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
- X.W. Wu
TUB, Beijing, People's Republic of China
|
|
|
The Compact Linear Collider (CLIC) is a study for a future room temperature electron-positron collider with a maximum center-of-mass energy of 3 TeV. To efficiently achieve such high energy, the project relies on a novel two beam acceleration concept and on high-gradient accelerating structures working at 100 MV/m. In order to meet the luminosity requirements, the break-down rate in these high-field structures has to be kept below 10 per billion. Such gradients and breakdown rates have been demonstrated by high-power RF testing several 12 GHz structures. However, the presence of beam-loading modifies the field distribution for the structure, such that a higher input power is needed in order to achieve the same accelerating gradient as the unloaded case. The potential impact on the break-down rate was never measured before. In this paper we present an experiment located at the CLIC Test Facility CTF3 recently proposed in order to quantify this effect, layout and hardware status, and discuss its first results.
|
|
|
Slides TUPP033 [1.970 MB]
|
|
|
Poster TUPP033 [2.355 MB]
|
|
|
THPP013 |
Prototype Development of the CLIC Crab Cavities |
856 |
|
- G. Burt, P.K. Ambattu, A.C. Dexter, M. Jenkins, C. Lingwood, B.J. Woolley
Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
- V.A. Dolgashev
SLAC, Menlo Park, California, USA
- P. Goudket, P.A. McIntosh
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- A. Grudiev, G. Riddone, A. Solodko, I. Syratchev, R. Wegner, W. Wuensch
CERN, Geneva, Switzerland
- C. Hill, N. Templeton
STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
|
|
|
CLIC will require two crab cavities to align the beams to provide an effective head-on collision with a 20 mdeg crossing angle at the interaction point. An X-band system has been chosen for the crab cavities. Three prototype cavities have been developed in order to test the high power characteristics of these cavities. One cavity has been made by UK industry and one has been made using the same process as the CLIC main linac in order to gain understanding of breakdown behaviour in X-band deflecting cavities. The final cavity incorporates mode-damping waveguides on each cell which will eventually contain SiC dampers. This paper details the design, manufacture and preparation of these cavities for testing and a report on their status.
|
|
|
TUPP033 |
Effect of Beam-Loading on the Breakdown Rate of High Gradient Accelerating Structures |
499 |
TUPOL08 |
|
|
- J.L. Navarro Quirante, R. Corsini, A. Degiovanni, S. Döbert, A. Grudiev, O. Kononenko, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, F. Tecker, L. Timeo, B.J. Woolley, X.W. Wu, W. Wuensch
CERN, Geneva, Switzerland
- O. Kononenko
SLAC, Menlo Park, California, USA
- A. Solodko
JINR, Dubna, Moscow Region, Russia
- J. Tagg
National Instruments Switzerland, Ennetbaden, Switzerland
- B.J. Woolley
Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
- X.W. Wu
TUB, Beijing, People's Republic of China
|
|
|
The Compact Linear Collider (CLIC) is a study for a future room temperature electron-positron collider with a maximum center-of-mass energy of 3 TeV. To efficiently achieve such high energy, the project relies on a novel two beam acceleration concept and on high-gradient accelerating structures working at 100 MV/m. In order to meet the luminosity requirements, the break-down rate in these high-field structures has to be kept below 10 per billion. Such gradients and breakdown rates have been demonstrated by high-power RF testing several 12 GHz structures. However, the presence of beam-loading modifies the field distribution for the structure, such that a higher input power is needed in order to achieve the same accelerating gradient as the unloaded case. The potential impact on the break-down rate was never measured before. In this paper we present an experiment located at the CLIC Test Facility CTF3 recently proposed in order to quantify this effect, layout and hardware status, and discuss its first results.
|
|
|
Slides TUPP033 [1.970 MB]
|
|
|
Poster TUPP033 [2.355 MB]
|
|
|