Author: Shaker, H.
Paper Title Page
MOPP034 Beam Dynamics Studies of the CLIC Drive Beam Injector 131
SUPG027   use link to see paper's listing under its alternate paper code  
 
  • S. Sanaye Hajari, S. Döbert, H. Shaker
    CERN, Geneva, Switzerland
  • S. Sanaye Hajari, H. Shaker
    IPM, Tehran, Iran
 
  In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel with the main linac. The beam in the Drive Beam Accelerator is phase coded. This means only every second accelerator bucket is occupied. However, a few percent of particles are captured in wrong buckets, called satellite bunches. The phase coding is done via a sub-harmonic bunching system operating at a half the acceleration frequency. The beam dynamics of the Drive Beam injector complex has been studied in detail and optimised. The model consists of a thermionic gun, the bunching system followed by some accelerating structures and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher and a tapered travelling wave buncher all embedded in a solenoidal magnetic field. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimising the overall bunching process and in particular decreasing the satellite population and the beam loss in magnetic chicane and in transverse plane limiting the beam emittance growth.  
 
THPP028 Design and Beamloading-Simulations of a Pre-Bunching Cavity for the CLIC Drive Beam Injector 895
SUPG001   use link to see paper's listing under its alternate paper code  
 
  • M. Dayyani Kelisani, S. Döbert, H. Shaker
    CERN, Geneva, Switzerland
  • H. Shaker
    IPM, Tehran, Iran
 
  The CLIC project is developing a multi-TeV center-of-mass electron-positron collider based on high-gradient, room-temperature accelerating structures and a novel two-beam RF power generation scheme. The RF power for the CLIC accelerating structures is provided by the so-called drive beam which is a low energy, high current electron beam. The drive beam will be generated from a high current (up to 5 A) pulsed (142μs) thermionic electron gun and then followed by a bunching system. The bunching system is composed of three sub-harmonic bunchers operating at a frequency of 499.75 MHz, a pre-buncher and a traveling wave buncher both operating at 999.5MHz. The pre-buncher cavity, which has a great importance on minimization the satellite population, should be designed with special consideration of the high beam loading effect due to the high current beam crossing the cavity. In this work we report on RF design, analytical beam loading calculations and simulations for the CLIC drive beam injector pre-buncher cavity.  
 
MOPP034 Beam Dynamics Studies of the CLIC Drive Beam Injector 131
SUPG027   use link to see paper's listing under its alternate paper code  
 
  • S. Sanaye Hajari, S. Döbert, H. Shaker
    CERN, Geneva, Switzerland
  • S. Sanaye Hajari, H. Shaker
    IPM, Tehran, Iran
 
  In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel with the main linac. The beam in the Drive Beam Accelerator is phase coded. This means only every second accelerator bucket is occupied. However, a few percent of particles are captured in wrong buckets, called satellite bunches. The phase coding is done via a sub-harmonic bunching system operating at a half the acceleration frequency. The beam dynamics of the Drive Beam injector complex has been studied in detail and optimised. The model consists of a thermionic gun, the bunching system followed by some accelerating structures and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher and a tapered travelling wave buncher all embedded in a solenoidal magnetic field. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimising the overall bunching process and in particular decreasing the satellite population and the beam loss in magnetic chicane and in transverse plane limiting the beam emittance growth.  
 
THPP028 Design and Beamloading-Simulations of a Pre-Bunching Cavity for the CLIC Drive Beam Injector 895
SUPG001   use link to see paper's listing under its alternate paper code  
 
  • M. Dayyani Kelisani, S. Döbert, H. Shaker
    CERN, Geneva, Switzerland
  • H. Shaker
    IPM, Tehran, Iran
 
  The CLIC project is developing a multi-TeV center-of-mass electron-positron collider based on high-gradient, room-temperature accelerating structures and a novel two-beam RF power generation scheme. The RF power for the CLIC accelerating structures is provided by the so-called drive beam which is a low energy, high current electron beam. The drive beam will be generated from a high current (up to 5 A) pulsed (142μs) thermionic electron gun and then followed by a bunching system. The bunching system is composed of three sub-harmonic bunchers operating at a frequency of 499.75 MHz, a pre-buncher and a traveling wave buncher both operating at 999.5MHz. The pre-buncher cavity, which has a great importance on minimization the satellite population, should be designed with special consideration of the high beam loading effect due to the high current beam crossing the cavity. In this work we report on RF design, analytical beam loading calculations and simulations for the CLIC drive beam injector pre-buncher cavity.