Author: Reynet, D.
Paper Title Page
TUPP082 The MYRRHA Spoke Cryomodule Design 613
 
  • H. Saugnac, J.-L. Biarrotte, S. Blivet, P. Duchesne, N. Gandolfo, J. Lesrel, G. Olry, E. Rampnoux, D. Reynet
    IPN, Orsay, France
 
  In the framework of the MAX project, dedicated to the detailed study of the MYRRHA facility LINAC, the engineering study of the ‘Spoke’ cavities cryomodule, situated in the low energy superconducting section, has been achieved. The beam optics, highly constrained by strong reliability requirements, leads to a modular cryomodule composed of two β=0.37, 352 MHz, single bar ‘Spoke’ cavity cooled at 2K. The power coupler design, not studied in detail under the MAX project, is directly taken from a 20 kW continuous wave 352 MHz coupler designed and successfully tested in the framework of the previous EUROTRANS and EURISOL projects. The cold tuning system is identical to the one designed for the ESS ‘Spoke’ cavities. We present in this paper, the RF, the mechanical and the thermal design of the complete cryomodule as well as the optimization and simulations of its individual components (Cavity, Cryostat, Tuning System…).  
 
THPP077 Fast Tuner Performance for a Double Spoke Cavity 1034
 
  • N. Gandolfo, S. Bousson, S. Brault, P. Duchesne, P. Duthil, G. Olry, D. Reynet
    IPN, Orsay, France
  • C. Darve, M. Lindroos
    ESS, Lund, Sweden
 
  IPN Orsay is developing the low-beta double Spoke cavities cryomodule for the ESS. In order to compensate resonant frequency variations of each cavity during operation, a deformation tuner has been studied and two of them have been built. The typical perturbations are coming from LHe saturated bath pressure variations as well as microphonics and Lorentz force detuning (LFD). In this paper, the tuner performance of the double Spoke cavity is presented.