Author: Ramberger, S.
Paper Title Page
TUPP089 Tuning and Field Stabilization of the CERN Linac4 Drift Tube Linac 631
TUPOL09   use link to see paper's listing under its alternate paper code  
SUPG018   use link to see paper's listing under its alternate paper code  
 
  • M.R. Khalvati
    IPM, Tehran, Iran
  • S. Ramberger
    CERN, Geneva, Switzerland
 
  The Drift Tube Linac (DTL) for the new linear accelerator Linac4 at CERN will accelerate H–beams of up to 40 mA average pulse current from 3 to 50 MeV. The structure consists of three cavities. The first cavity (Tank1) is a 3.9 m long tank containing 38 drift tubes, 10 fixed tuners, 2 movable tuners and 12 post-couplers, operating at a frequency of 352.2 MHz and an average accelerating field of 3.1 MV/m. This paper reports on the results and procedures used for the low–power tuning, stabilization and power coupler tuning carried out on the first Linac4 DTL tank. The upgrade of the bead pull measurement system and twists to the well-known tilt sensitivity technique are discussed.  
 
THPP036 CERN Linac4 Drift Tube Linac Manufacturing and Assembly 923
THPOL06   use link to see paper's listing under its alternate paper code  
 
  • S. Ramberger, P. Bourquin, A. Cherif, Y. Cuvet, A. Dallocchio, G. Favre, J.-F. Fuchs, J.-M. Geisser, F. Gerigk, J.-M. Giguet, J. Hansen, M. Polini, S. Sgobba, N. Thaus, M. Vretenar
    CERN, Geneva, Switzerland
 
  The manufacturing of the Linac4 Drift Tube Linac (DTL) components has been completed and the assembly of the structures is in its final stages. 3 tanks of 3.9m, 7.3m, and 7.3m, designed to accelerate a 40mA average pulse current H–beam from 3 to 50MeV, are being assembled from 2, 4 and 4 segments of about 2.0m length, containing each from 22 drift tubes at the low energy end, down to only 6 at the high energy end. Due to its peculiar design avoiding adjustment mechanisms on the drift tube, tight tolerances have to be maintained in the production. This paper discusses the assembly stages that are used to achieve the tolerances over the full length of the structures. Metrology results on the assembled DTL Tank1 confirm the required precision.  
 
THPP038 The Drift Tube Welding Assembly for the Linac4 Drift Tube Linac at CERN 929
 
  • I. Sexton, A. Cherif, Y. Cuvet, G. Favre, J.-M. Geisser, S. Ramberger, S. Sgobba, T. Tardy
    CERN, Geneva, Switzerland
  • F.M. Mirapeix
    DMP, Mendaro, Spain
 
  The fabrication of the Linac4 Drift Tube Linac (DTL) required the welding assembly of 108 drift tubes (DT) which has been undertaken at the CERN workshop. The design of the DTL is particular in that it was purposely simplified to avoid any position adjustment mechanism for drift tubes in the tank. In consequence, drift tubes have been designed with tight tolerances and parts have been assembled with an optimised welding procedure. Two re-machining stages have been introduced in order to compensate for welding distortions. This paper discusses the various assembly stages with a view on the final precision that has been achieved.  
poster icon Poster THPP038 [8.665 MB]