Author: Park, G.-T.
Paper Title Page
TUPP085 RAON Cryomodule Design for QWR, HWR, SSR1 and SSR2 622
 
  • W.K. Kim, H. Kim, H.J. Kim, Y. Kim, M. Lee, G.-T. Park
    IBS, Daejeon, Republic of Korea
 
  The accelerator called RAON which will be built in Korea has four kinds of superconducting cavities such as QWR, HWR, SSR1 and SSR2, operating at 2 K and 4.5 K [1]. The current status of design for the QWR, HWR, SSR1 and SSR2 cryomodules are reported. The issues included in the paper are thermal and structural design results of the components such as supports and thermal shield in the cryomodules. The cryomodule hosts the superconducting cavities in high vacuum and thermally insulated environment in order to maintain the operating temperature of superconducting cavities. It also keeps the cavities in a good alignment to the beam line. It has an interface for supplying RF power to cavities between cold and warm components. The whole configuration of the integrated system is also presented. This paper presents the detailed design of the cryomodule.  
 
TUPP086 RAON Superconducting Radio Frequency Test Facility Construction 625
 
  • H. Kim, D. Jeon, Y.W. Jo, Y. Jung, S.A. Kim, W.K. Kim, S.J. Lee, S.W. Nam, G.-T. Park, J.H. Shin
    IBS, Daejeon, Republic of Korea
 
  Superconducting Radio Frequency (SRF) test facility for RAON is under construction process. It consists of cryogenic system, clean room for cavity process and assembles vertical test, horizontal test, and the radiation shield. The cryoplant has 330 W (4.5 K equivalent) which supplies 4.5K supercritical helium to the cavity test and cryomodule test bench. Clean rooms are for cavity process and assemble whose class is from 10 to 10000. The layout for the vertical and horizontal test bench is shown and the radiation shield for the test bench is shown to reduce X-ray coming from cavity. To estimate the thickness of concrete, radiation simulation is performed.  
 
TUPP088 The Fabrication of the β=0.12 HWR at RISP 628
 
  • G.-T. Park, H.J. Cha, Y. Jung, H. Kim, W.K. Kim
    IBS, Daejeon, Republic of Korea
 
  At RISP, the superconducting cavities have been developed to construct RAON, the heavy ion accelerator. Among the cavities, the fabrication of the QWR (Quarter wave resonator) and the HWR (Half wave resonator)are complete. The detailed fabrication processes including material inspection, forming, the electron beam welding, and the clamp up test are described.