Author: Nolen, J.A.
Paper Title Page
MOPP003 A Compact Linac Design for an Accelerator Driven System 52
 
  • B. Mustapha, S.V. Kutsaev, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
A compact linac design has been developed for an Accelerator Driven System (ADS). The linac is under 150 meters in length and comprises a radio-frequency quadrupole (RFQ) and 20 superconducting modules. Three types of half-wave cavities and two types of elliptical cavities have been designed and optimized for high performance at frequencies of 162.5, 325 and 650 MHz. The lattice is being designed and optimized for operation with a peak power of 25 MW for a 25 mA – 1 GeV proton beam. The cavities RF design as well as the linac lattice will be presented along with end-to-end beam dynamics simulations for beam currents ranging from 0 to 25 mA.
 
 
TUPP004 An In-flight Radioactive Ion Separator Design for the ATLAS Facility 446
 
  • B. Mustapha, B. Back, C.R. Hoffman, B.P. Kay, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
An in-flight radioactive beam separator, named AIRIS, is being designed to enhance the radioactive beam capabilities of the ATLAS facility at Argonne. In order to serve all the experimental areas while maintaining the stable beam capabilities, the separator design is of broadband type. This design allows the selected radioactive beam to come back on the ATLAS beam line while stable beams continue on the same straight line with the separator turned off. The separation is performed in two steps, the first is magnetic in a chicane made of four magnets and four multipoles, while the second uses an rf sweeper taking advantage of the time separation between the beam of interest and potential contaminants including the primary beam tail. We will report on the progress of the AIRIS design effort with special emphasis on the performance of the rf sweeper.
 
 
WEIOB04 CW Heavy Ion Accelerator With Adjustable Energy for Material Science 780
 
  • S.V. Kutsaev, B. Mustapha, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357
The proposed eXtreme MATerial (XMAT) research facility at ANL’s Advanced Photon Source (APS) combines medium-energy heavy-ion accelerator capability with the high-energy X-ray analysis to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. The XMAT facility requires CW heavy ion accelerator with adjustable beam energy in the range of 300 keV/u to 1.25 MeV/u. Such an accelerator has been developed and based on ECR, normal conducting RFQ and multi-gap quarter wave resonators (QWR) operating at 60 MHz. This talk will present complete 3D beam dynamics studies and multi-physics design of both RFQ and QWRs. The design includes a beam transport system capable to focus ions into 20-micron diameter spot on the target.
 
slides icon Slides WEIOB04 [1.159 MB]