Author: Neumann, A.
Paper Title Page
MOPP070 Final Design for the BERLinPro Main Linac Cavity 217
 
  • A. Neumann, J. Knobloch
    HZB, Berlin, Germany
  • K. Brackebusch, T. Flisgen, T. Galek, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  Funding: This work is partly funded by BMBF contract no. 05K10PEA and 05K10HRC
The Berlin Energy Recovery Linac Project (BERLinPro) is designed to develop and demonstrate CW LINAC technology for 100-mA-class ERLs. High-current operation requires an effective damping of higher-order modes (HOMs) of the 1.3 GHz main-linac cavities. We have studied elliptical 7-cell cavities based on a modified Cornell ERL design combined with JLab's waveguide HOM damping approach. This paper will summarize the final optimization of the end-cell tuning for minimum external Q of the HOMs, coupler kick calculations of the single TTF fundamental power coupler as well as multipole expansion analysis of the given modes and a discussion on operational aspects.
 
poster icon Poster MOPP070 [1.561 MB]  
 
MOPP071 BESSY VSR 1.5 GHz Cavity Design and Considerations on Waveguide Damping 221
 
  • A.V. Velez, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
 
  The BESSY VSR upgrade of the BESSY II light source represents a novel approach to simultaneously store long (ca. 15ps) and short (ca. 1.5ps) bunches in the storage ring with the present user optics. To this end, new high-voltage L-Band superconducting multi-cell cavities must be installed in one of the straights of the ring. These 1.5 GHz and 1.75 GHz cavities are based on 1.3 GHz systems being developed for the BERLinPro energy-recovery linac. This paper describes the baseline electromagnetic design of the first 5-cell cavity operating at 1.5 GHz.  
poster icon Poster MOPP071 [1.088 MB]  
 
TUPP065 RF Input Power Couplers for High Current SRF Applications 575
TUPOL011   use link to see paper's listing under its alternate paper code  
 
  • V.F. Khan, W. Anders, A. Burrill, J. Knobloch, O. Kugeler, A. Neumann
    HZB, Berlin, Germany
  • H. Wang
    JLab, Newport News, Virginia, USA
 
  High current SRF technology is being explored in present day accelerator science. The BERLinPro project is presently being built at the HZB to address the challenges involved in high current SRF machines. A 100 mA electron beam is designed to be accelerated to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling high input RF power for the gun as well as booster cavities where there is no energy recovery process. A high power co-axial input coupler is being developed to be used for the booster and gun cavities at the nominal beam current. The coupler is based on the KEK–cERL coupler design. The KEK coupler design has been modified to minimise the penetration of the tip in the beampipe without compromising on beam-power coupling ( Qext ~1 x 105). Herein we report on the RF design for the high power (130 kW) BERLinPro (BP) couplers along with the test stand for conditioning the couplers. We will also report on the RF conditioning of the TTF-III couplers modified for cw operation (low power ~ 10 kW) which will be utilised in a new 4-mA SRF Photoinjector and the BERLinPro main linac cryomodule.  
slides icon Slides TUPP065 [2.465 MB]  
 
THPP062 BERLinPro SRF Gun Notch Filter Investigations 995
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • J. Knobloch, A. Neumann
    HZB, Berlin, Germany
 
  BERLinPro is an approved ERL project to demonstrate energy recovery at 100 mA beam current by pertaining a high quality beam. These goals place stringent requirements on the SRF cavity (1300 MHz, β=1) for the photoinjector which has to deliver a small emittance 100 mA beam with at least 1.8 MeV kinetic energy while limited by fundamental power coupler performance to about 230 kW forward power. The RF and beam dynamics gun cavity features 1.4 λ/2 cell resonator. To protect a cathode housing from RF power propagation from the cavity cells and to reduce its component heating a high-frequency notch filter was investigated. We present results of different schemes of choke cell combinations to optimize filter parameters. The goal for the filter design was the RF power attenuation better than -30 dB in the wide frequency range.  
 
THPP072 BERLinPro Booster Cavity Design, Fabrication and Test Plans 1019
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
 
  The BERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.