Author: Nayak, S.
Paper Title Page
MOPP005 High Power Electron Accelerator Programme at BARC 58
 
  • K.C. Mittal, S. Acharya, R.I. Bakhtsingh, R. Barnwal, D. Bhattacharjee, S. Chandan, N. Chaudhary, R.B. Chavan, S.P. Dewangan, K.P. Dixit, S. Gade, L.M. Gantayet, S.R. Ghodke, S. Gond, D. Jayaprakash, M. Kumar, M.K. Kumar, H.K. Manjunatha, R.L. Mishra, J. Mondal, B. Nayak, S. Nayak, V.T. Nimje, S. Parashar, R. Patel, R.N. Rajan, P.C. Saroj, H.E. Sarukte, D.K. Sharma, V. Sharma, S.K. Srivasatava, N.T. Thakur, A.R. Tillu, R. Tiwari, H. Tyagi, A. Waghmare, V. Yadav
    BARC, Mumbai, India
 
  Bhabha Atomic Research Centre in India has taken up the indigenous design & development of high power electron accelerators for industrial, research and cargo-scanning applications. For this purpose, Electron Beam Centre (EBC) has been set up at Navi Mumbai, India. Pulsed RF Linacs, with on-axis coupled cavity configuration, include the 10 MeV Industrial RF linac, as well as 9 MeV linac and compact 6 MeV linac for cargo-scanning applications. Industrial DC accelerators include a 500 keV Cockroft-Walton machine and 3 MeV Dynamitron. Several radiation processing applications, such as material modification, food preservation, flue-gas treatment, etc. have been demonstrated using these accelerators. Cargo-scanning linacs have been successfully commissioned and are being characterized for the required x-ray output. A 30 MeV RF Linac, for research applications, such as shielding studies and n-ToF experiments, is being designed and developed. For ADS studies, a 100 MeV, 100 kW RF Linac system is proposed. This paper presents the details of the design of these accelerators, their development, current status and utilization for various applications.  
 
MOPP007 SF6 Gas Monitoring and Safety for DC Electron Beam Accelerator at EBC, Kharghar, Navi Mumbai 61
 
  • S.K. Suneet, S. Acharya, S. Banerjee, R. Barnwal, D. Bhattacharjee, N. Chaudhary, R.B. Chavan, K.P. Dixit, S. Gade, L.M. Gantayet, S.R. Ghodke, S. Gond, B.S. Israel, D. Jayaprakash, N. Lawangare, K. Mahender, R.L. Mishra, K.C. Mittal, B. Nayak, S. Nayak, R. Patel, R.N. Rajan, P.C. Saroj, D.K. Sharma, V. Sharma, M.K. Srvastava, D.P. Suryaprakash, N.T. Thakur, R. Tiwari, A. Waghmare
    BARC, Mumbai, India
 
  A 3 MeV, 30kW DC Industrial electron beam accelerator has been designed, commissioned and tested at Electron beam centre, Kharghar. The accelerator has been tested upto 5 kW power level with SF6 gas at 6 kg/cm2. The accelerating column, high voltage multiplier column, electron gun and its power supply are housed in accelerator tank, which is filled with SF6 gas as gaseous insulator at 6 kg/cm2. The SF6 gas is being used due to high dielectric strength and excellent heat transfer characteristics. The SF6 gas is non toxic and non carcinogenic. The SF6 gas replaces oxygen hence the TLV (threshold limiting value) is 1000 ppm for inhaled gas for persons working on the SF6 gas handling system. The SF6 gas is being green house gas, leak tightness has to monitor in the system and leak if any should be repaired. The gas should be used, recycled and reuse and thus saving the environment. This paper describes the safety and monitoring of the SF6 gas leak, quality and precautions in 3MeV accelerator.  
poster icon Poster MOPP007 [1.389 MB]  
 
THPP003 Cooling of High Pressure Insulating Gas for 3 MeV DC Accelerator: an Alternate Approach 839
 
  • S.R. Ghodke, S. Acharya, R. Barnwal, K.P. Dixit, L.M. Gantayet, B.S. Israel, D. Jayaprakash, K. Mahender, K.C. Mittal, S. Nayak, R.N. Rajan, D.K. Sharma, V. Sharma, S.K. Suneet, D.P. Suryaprakash
    BARC, Mumbai, India
 
  3 MeV Accelerator Project working inside the ‘Electron Beam Centre’ (EBC) building at Kharghar, Navi Mumbai. Generally in DC and Pelletron accelerators Nitrogen/SF6 gas is taken out from accelerator tank and it is cooled by separate heat exchanger and blower unit outside the accelerator tank. In our alternate approach we have designed fan/ blower to work under high pressure inside accelerator tank. Fans are designed to work in high pressure SF6 environment at 7 bar absolute pressure with 42 kg/m3 SF6 gas density. Fan throughs air over radiator type finned tube heat exchanger, installed inside accelerator tank. Fan speeds are controlled through variable frequency drive. Two numbers of such assemblies are fabricated, installed and tested in Nitrogen and SF6 gas environment at different pressure and variable fan speed. Performances are recorded and plotted in graphical form. These cooling systems are shown excellent performance in last five years. Paper will discuss about design of cooling system, cooling calculation of fan, fabrication of fan and heat exchanger, 5 TR chiller unit, variable frequency drive, fan performance etc.  
poster icon Poster THPP003 [1.644 MB]