Author: Miller, D.
Paper Title Page
THIOA02 Superconducting RF Development for FRIB at MSU 790
 
  • K. Saito, N.K. Bultman, E.E. Burkhardt, F. Casagrande, S.K. Chandrasekaran, S. Chouhan, C. Compton, J.L. Crisp, K. Elliott, A. Facco, A.D. Fox, P.E. Gibson, M.J. Johnson, G. Kiupel, R.E. Laxdal, M. Leitner, S.M. Lidia, I.M. Malloch, D. Miller, S.J. Miller, D. Morris, D. Norton, R. Oweiss, J.P. Ozelis, J. Popielarski, L. Popielarski, A.P. Rauch, R.J. Rose, T. Russo, S. Shanab, M. Shuptar, S. Stark, N.R. Usher, G.J. Velianoff, D.R. Victory, J. Wei, G. Wu, X. Wu, T. Xu, T. Xu, Y. Yamazaki, Q. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
 
  Funding: *This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
FRIB is a $730M heavy ion accelerator project and a very large scale machine for many nuclear physics users. The civil construction started on March 17th 2014. The SRF system design and development have completed. The machine is to be in early completion end of 2019. FRIB accelerates ion species up to 238U with energies of no less than 200MeV/u and provides a beam power up to 400kW. Four SRF cavity families are used from β=0.041, 0.085 (QWRs) to 0.29 and 0.53 (HWRs). 8T superconducting solenoids are installed in the cryomodules for space effective strong beam focusing. The biggest challenges are in accelerating the high-power heavy ion beams from the very low energy to medium energy and the stable operation for large user community. The SRF cryomodule design addressed three critical issues: high performance, stable operation and easy maintainability, which chose several unique technical strategies, e.g.2K operation, bottom up cryomodule assembly, local magnetic shielding and so on. This talk will include high performance cavity R&D, local magnetic shielding, flux trapping by solenoid fringe field, and bottom up cryomodule assembly.
 
slides icon Slides THIOA02 [5.049 MB]