Author: Mereu, P.
Paper Title Page
MOPP087 Construction of the Modules of the IFMIF-EVEDA RFQ 257
 
  • A. Pepato, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
  • R. Dima, L. Ferrari, E. Udup
    INFN- Sez. di Padova, Padova, Italy
  • A. Margotti
    INFN-Bologna, Bologna, Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  The IFMIF project aims to produce an intense neutron flux to test and qualify materials suitable for the construction of fusion power plants. We are working on the engineering validation phase of the project, which consists on the construction of a linear accelerator prototype to be installed and commissioned in Rokkasho. The RFQ is composed of 18 modules flanged together for a total length of 9.8m designed to accelerate the 125mA D+ beam to 5MeV at a frequency of 175MHz. The mechanical specifications are very challenging, tight tolerances are required on the machining and on the brazing process. The line is subdivided into 3 Super Modules of 6 modules each. The production of the High Energy portion has been completed and delivered, while the Low Energy one is performing the acceptance test. They were commissioned to external firms. The production of the Intermediate Energy portion has been done in house (INFN) and will be commissioned soon. The 1st modules (16, 17 and 2) were produced adopting 2 brazing steps, while for all the remaining ones we adopted a single brazing step. In this paper the production status and the development of the brazing procedure will be described.  
 
THPP044 ESS Normal Conducting Linac Status and Plans 948
 
  • A. Ponton, B. Cheymol, R. De Prisco, M. Eshraqi, R. Miyamoto, E. Sargsyan
    ESS, Lund, Sweden
  • G. Bourdelle, M. Desmons, A. France, O. Piquet, B. Pottin
    CEA/DSM/IRFU, France
  • I. Bustinduy, P.J. González, J.L. Muñoz, I. Rueda, F. Sordo
    ESS Bilbao, Bilbao, Spain
  • L. Celona, S. Gammino, L. Neri
    INFN/LNS, Catania, Italy
  • M. Comunian, F. Grespan, A. Pisent, C. R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  The ESS Normal Conducting (NC) linac is composed of an ion source, a Low Energy Beam Transport line, a Radio Frequency Quarupole (RFQ), a Medium Energy Beam Transport Line (MEBT) and a Drift Tube Linac (DTL). It creates, bunches and accelerates the proton beam up to 90 MeV before injecting into the superconducting linac which will deliver a 5 MW beam onto the neutron production target. The construction of the NC linac is part of a broad collaboration involving experts of various Labs in Europe. The technical chalenges and the collaboration strategy for the NC linac will be presented.  
 
THPP087 ESS DTL Design and Drift Tube Prototypes 1050
 
  • F. Grespan, M. Comunian, A. Pisent, M. Poggi, C. R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  The Drift Tube Linac (DTL) for the ESS accelerator will accelerate protons up to 62.5 mA average pulse current from 3.62 to 90 MeV. The 5 tanks composing the DTL are designed to operate at 352.2 MHz in pulses of 2.86 ms long with a repetition rate of 14 Hz. The accelerating field is around 3.1 MV/m, constant in each tank. Permanent magnet quadrupoles (PMQs) are used as focusing element in a FODO lattice. The empty drift tubes accommodate Electro Magnetic Dipoles (EMDs) and Beam Position Monitors (BPMs) in order to implement beam corrective schemes. A complete set of Drift Tubes is under construction that is BPM, EMD and PMQ types. These prototypes are aimed to validate the design with the involved integration issues of the various components, as well as the overall technological and assembly process. This paper presents the main mechanical choices and the status of the prototyping program of the Drift Tubes.