Author: Maier, M.T.
Paper Title Page
MOIOC02 Single-Knob Beam Line for Transverse Emittance Partitioning 36
 
  • C. Xiao, L. Groening, O.K. Kester, H. Leibrock, M.T. Maier, P. Rottländer
    GSI, Darmstadt, Germany
  • M. Chung
    UNIST, Ulsan, Republic of Korea
 
  Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the two emittances constant as well as the transverse rms Twiss parameters (αx,y and βx,y) in both planes. It is shown that this single knob is the solenoid field strength, and now we fully understand the decoupling features.  
slides icon Slides MOIOC02 [1.327 MB]  
 
TUPP059 Advanced Beam Matching to a High Current RFQ 559
 
  • S.G. Yaramyshev, W.A. Barth, L.A. Dahl, P. Gerhard, L. Groening, M.T. Maier, S. Mickat, A. Orzhekhovskaya, B. Schlitt, H. Vormann
    GSI, Darmstadt, Germany
 
  The High Current Injector (HSI) of the heavy ion linac UNILAC at GSI comprises the transport lines, the RFQ and two DTL tanks. Beam matching to the RFQ acceptance with a magnetic quadrupole quartet has been worked out manually during commissioning and operation of the machine. Due to a strong overlapping of the field from neighboring quadrupole lenses, a standard optics calculation does not provide for the required reliability. Advanced beam dynamics simulations have been done with the macroparticle code DYNAMION. The superposition of the measured magnetic fields of each quadrupole was taken into account. The quadrupole settings were optimized using the Monte-Carlo method. Two solutions have been found in accordance with the general theory of particle optics. Beam dynamics simulations with new quadrupole settings show an increased particle transmission through the RFQ. The results of numerical study have been confirmed during experimental campaigns. An improved performance of the whole HSI has been demonstrated. The proposed algorithm and a comparison of the measured data with result of simulations are presented.