Author: Kot, Y.A.
Paper Title Page
TUPP020 Beam Dynamics Simulation for FLASH2 HGHG Option 471
 
  • G. Feng, S. Ackermann, J. Bödewadt, W. Decking, M. Dohlus, Y.A. Kot, T. Limberg, M. Scholz, I. Zagorodnov
    DESY, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
  • T. Plath
    Uni HH, Hamburg, Germany
 
  The free electron laser (FEL) facility at DESY in Hamburg (FLASH) is the world's first FEL user facility which can produce extreme ultraviolet (XUV) and soft X-ray photons. In order to increase the beam time delivered to users, a major upgrade named FLASH II is in progress. The electron beamline of FLASH2 consists of diagnostic and matching sections and a SASE undulator section. A seeding undulator section will be installed in the future. FLASH2 will be used as a seeded FEL as well as a SASE FEL. In this paper, some results of beam dynamics simulation for the SASE option are given at first which includes the parameters selection for the bunch compressors, RF parameters calculation for the accelerating modules and the beam dynamics simulation taking into account the collective effects. Beam dynamics simulation for a single stage HGHG option is based on the work for the SASE option. Electron bunches with low uncorrelated energy spread and small energy chirp are obtained after parameters optimization. The FEL simulation results show that 33.6 nm wavelength FEL radiation with high monochromaticity can be seeded at FLASH2 with a 235 nm seeding laser.