Author: Kashiwagi, S.
Paper Title Page
MOPP077 Electron-Driven Positron Capture Simulation for ILC 233
 
  • Y. Seimiya, M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • T. Okugi, T. Omori, M. Satoh, J. Urakawa
    KEK, Ibaraki, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  ILC (International Linear Collider) is a next high-energy physics project to study the Higgs property as detail as possible and new phenomena beyond standard model. In ILC, the positron beam is produced by converting gamma rays from undulator radiations. To obtain gamma rays as undulator radiation, the electron beam for collision (150 GeV or more) is used. This positron generation scheme is a totally new approach. From project point of view, it is desirable to have a technical backup as a replacement of the undulator scheme. We propose an ILC positron source based on the conventional electron driven scheme. In this scheme, positron beam is generated from electromagnetic shower in a heavy target material where electron beam is injected. By manipulating the beam time structure to relax the heat load on the production target, the scheme can be feasible technically. In this study, positron capture in the electron driven scheme is simulated from the positron production to the positron damping ring, to demonstrate that an enough amount of positron can be generated and captured with a controllable heat load on the target.  
poster icon Poster MOPP077 [0.879 MB]  
 
TUPP078 High Gain FEL with a Micro-bunch Structured Beam by the Transverse-Longitudinal Phase Space Rotation 607
 
  • M. Kuriki, Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, K. Ohmi
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • R. Kato
    ISIR, Osaka, Japan
 
  FEL is one of the ideal radiation source over the wide range of wavelength region with a high brightness and a high coherence. Many methods to improve FEL gain has been proposed by introducing an active modulation on the bunch charge distribution. The transverse-longitudinal phase-space rotation is one of the promising method to realize the density modulation as the micro-bunch structure. Initially, a beam density modulation in the transverse direction made by a mechanical slit, is properly transformed into the density modulation in the longitudinal direction by the phase-space rotation. That results the longitudinal micro-bunch structure. The micro-bunch structure made with this method has a large tunability by changing the slit geometry, the beam line design, and the beam dynamics tuning. A compact FEL facility based on this method is proposed.  
poster icon Poster TUPP078 [0.594 MB]  
 
THPP136 Study of Femtosecond Electron Bunch Generation at t-ACTS, Tohoku University 1178
THPOL01   use link to see paper's listing under its alternate paper code  
 
  • S. Kashiwagi, H. Hama, F. Hinode, A. Lueangaramwong, T. Muto, I. Nagasawa, S. Nagasawa, K. Nanbu, Y. Shibasaki, K. Takahashi, C. Tokoku
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • N.Y. Huang
    NSRRC, Hsinchu, Taiwan
 
  We are conducting a beam experiment of sub-picosecond electron bunch generation at a test accelerator as a coherent terahertz source (t-ACTS), Tohoku University. In the t-ACTS, the intense coherent terahertz radiation will be generated from an undulator and an isochronous accumulator ring based on the sub-picoseconds bunches. The accelerator is composed of a thermionic cathode rf gun, alpha magnet and 3 m-long accelerating structure. A velocity bunching scheme in accelerating structure is applied to generate the short electron bunch. The thermionic rf gun consists two independent cavities has been developed, which is capable of manipulating the beam longitudinal phase space. To produced femtosecond electron bunch, the longitudinal phase space distribution of the beam entering the accelerating structure is optimized by changing the rf gun parameters. The bunch length is measured by observing an optical tradition radiation with a streak camera. In the study of femtosecond electron bunch generation, a relation between the rf gun parameters and the bunch length after compression was investigated. The preliminary results of experiments will be described in this conference.