Paper | Title | Page |
---|---|---|
TUPP084 | Surface Treatment Facilities for SCRF Cavities at RISP | 619 |
|
||
Rare Isotope Science Project is engaged in the fabrication of four types of superconducting RF cavities. The surface treatment is one of the important processes of superconducting RF cavity fabrication. New superconducting RF cavity processing systems have been designed and developed for the etching of niobium in buffered chemical polish at RISP. The safety precautions used in protecting the operator from the acids used in the etchant and from the fumes given of during the process are discussed. All of the new hardware will be located in RISP Munji Superconducting Cavity Test Facility. | ||
TUPP086 | RAON Superconducting Radio Frequency Test Facility Construction | 625 |
|
||
Superconducting Radio Frequency (SRF) test facility for RAON is under construction process. It consists of cryogenic system, clean room for cavity process and assembles vertical test, horizontal test, and the radiation shield. The cryoplant has 330 W (4.5 K equivalent) which supplies 4.5K supercritical helium to the cavity test and cryomodule test bench. Clean rooms are for cavity process and assemble whose class is from 10 to 10000. The layout for the vertical and horizontal test bench is shown and the radiation shield for the test bench is shown to reduce X-ray coming from cavity. To estimate the thickness of concrete, radiation simulation is performed. | ||
WEIOB03 | Status of RAON Heavy Ion Accelerator Project | 775 |
|
||
Funding: This work was supported by the Institute for Basic Science funded by the Ministry of Science, ICT and Future Planning (MSIP) and the NRF of Korea under Contract 2013M7A1A1075764. Construction of the RAON heavy ion accelerator facility is under way in Korea to build the In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) facilities to support cutting-edge researches in various science fields. At present prototyping of major components are proceeding including 28 GHz ECR ion source, RFQ, superconducting cavities, magnets and cryomodules. Superconducting magnets of 28 GHz ECR ion source are fabricated and tested. First article of prototype superconducting cavities are delivered that were fabricated through domestic vendors. Prototype HTS quadrupole is under development. Progress report of the RAON accelerator systems is presented. |
||
![]() |
Slides WEIOB03 [6.228 MB] | |
THPP079 | Prototyping Progress of SSR1 Single Spoke Resonator for RAON | 1 |
|
||
The fabrication of prototypes for four different types of superconducting cavities (QWR, HWR, SSR1, and SSR2) for the Korean heavy ion accelerator, “RAON” is in progress. In this presentation, we report the current status of the SSR1 cavity (β=0.3 and f=325 MHz) prototype fabrication based on the technical designs. The issues when forming the niobium cavities such as pressing, machining, electron beam welding are reviewed. The RF testing for the prototypes, which will be done in near future, is also discussed. | ||
THPP095 | Design Study of Superconducting Linear Accelerator for Unstable Ion Beams in RISP | 1071 |
|
||
The post accelerator of RAON can accelerate the unstable and stable ion beams up to 15 MeV/u for 132Sn16+ and 58Ni8+ for 16.5 MeV/u, which has the ratio of mass to charge, A/q, of 8.3. The unstable ion beam such as 132Sn16+ produced by an ISOL system has the large transverse and longitudinal emittances. The post-accelerator consists of post-LEBT, RFQ, MEBT and superconduction linac(SCL3 and we optimized acceptance and beam envelope based on the beam dynamics in the linac. The accelerated beam by post accelerator was transported by the post-to-driver transport (P2DT) line which consists of a charge stripper, two charge selection sections and a telescope section with the bunching cavities to the high energy linac(SCL2) and accelerated up to 200 MeV/u. In this presentation, we will show the criteria for the design of the post accelerator and result of beam tracking simulation from post-LEBT to end of high energy linac. | ||