Paper |
Title |
Page |
TUPP056 |
High Current Proton Beam Operation at GSI UNILAC |
550 |
|
- W.A. Barth, A. Adonin, P. Gerhard, M. Heilmann, R. Hollinger, W. Vinzenz, H. Vormann
GSI, Darmstadt, Germany
|
|
|
A significant part of the experimental program at FAIR is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR Proton LINAC will deliver a pulsed proton beam of up to 35 mA of 36 μs duration at a repetition rate of 4 Hz. The current GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not dedicated for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown, that the UNILAC is able to provide for sufficient high intensities of CH3-beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach results in up to 2 mA of proton intensity at a maximum beam energy of 20 MeV, 100 μs pulse duration and a rep. rate of 4 Hz. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 17% of the FAIR requirements.
|
|
|
THPP015 |
Status of the FAIR Proton Source and LEBT |
863 |
|
- N. Chauvin, O. Delferrière, Y. Gauthier, P. Girardot, J.L. Jannin, A. Lotode, N. Misiara, J. Neyret, F. Senée, C.S. Simon, O. Tuske
CEA/IRFU, Gif-sur-Yvette, France
- R. Berezov, J. Fils, P. Forck, R. Hollinger, V. Ivanova, C. Ullmann, W. Vinzenz
GSI, Darmstadt, Germany
- A. Maugueret
CEA/DSM/IRFU, France
|
|
|
The unique Facility for Antiproton and Ion Research – FAIR will deliver stable and rare isotope beams covering a huge range of intensities and beam energies. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7x1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be deliver by a dedicated 75 mA/70 MeV proton linac. The injector section of this accelerator is composed by an ECR source, delivering a pulsed 100 mA H+ beam (4 Hz) at 95 keV and a low energy beam transport (LEBT) line required to match the beam for the RFQ injection. The proposed design for the LEBT is based on a dual solenoids focusing scheme. A dedicated chamber containing several diagnostics (Alisson scanner, Wien filter, SEM grid, Iris, Faraday Cup) will be located between the two solenoids. At the end of the beam line, an electrostatic chopper system is foreseen to inject up to 50μseconds long beam pulses into the RFQ. The status of LEBT simulations, design and fabrication of the FAIR proton injector will be presented.
|
|
|