Author: Hoffstaetter, G.H.
Paper Title Page
MOPP016 Extracting Superconducting Parameters from Surface Resistivity by Using Inside Temperature of SRF Cavities 80
 
  • G.M. Ge, G.H. Hoffstaetter, M. Liepe, H. Padamsee, V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The surface resistance of an RF superconductor depends on the surface temperature, the residual resistance and various superconductor parameters. These parameters can be determined by measuring the quality factor of a SRF cavity in helium-baths of different temperatures. The surface resistance can be computed from Q0 for any cavity geometry, however it is less simple to determine the temperature of the surface when only the temperature of the helium bath is known. Traditionally, it was approximated that the surface temperature on the inner surface of the cavity is the same as the temperature of the bath. This is a good approximation at small RF-field losses on the surface, but to determine the field dependence of Rs, one cannot be restricted to small field losses. Here we show how computer simulations can be used to determine the inside temperature so that Rs(Tin) can then be used to extract superconductor parameters. The computer code combines the well-known programs HEAT and SRIMP. We find that the error of the incorrect fitting method is about 10% at high RF-fields.  
 
MOPP018 Nitrogen-Doped 9-Cell Cavity Performance in the Cornell Horizontal Test Cryomodule 88
 
  • D. Gonnella, R.G. Eichhorn, F. Furuta, G.M. Ge, D.L. Hall, Y. He, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, A. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  Funding: U.S. Department of Energy
Cornell has recently completed construction and qualification of a horizontal cryomodule capable of holding a 9-cell ILC cavity. A nitrogen-doped niobium 9-cell cavity was assembled into the Horizontal Test Cryomodule (HTC) with a high Q input coupler and tested. We report on results from this test of a nitrogen-doped cavity in cryomodule and discuss the effects of cool down rate and thermal cycling on the residual resistance of the cavity.
 
 
TUPP016
Cornell ERL cavity production and vertical test results  
 
  • F. Furuta, B. Bullock, B. Clasby, R.G. Eichhorn, B. Elmore, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell ERL 7-cell cavities for the Main Linac Cryomodule (MLC), six 7-cells in total- have been fabricated, processed, and tested in the Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) vertical test pit. All have surpassed the specification values (Eacc=16.2MV/m with Qo of 2.0·1010 at 1.8K). In fact, the achieved Qo during vertical test were much higher than specs, the average of Qo is almost 3·1010 at 1.8K. In this poster, we will describe about our ERL cavity fabrication, preparation, and vertical testing results.  
 
THPP017 Beam-Based HOM Studies of the Cornell Energy Recovery Linac 7-Cell SRF Cavity 869
 
  • D.L. Hall, A.C. Bartnik, M.G. Billing, R.G. Eichhorn, G.H. Hoffstaetter, M. Liepe, C.E. Mayes, P. Quigley, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF Grant DMR-0807731
The 1.3 GHz 7-cell SRF cavity for the Cornell ERL main linac is optimized for high beam current ERL operation with injected CW beam currents of 100 mA. Beam stability at 100 mA requires very strong damping of the Higher-Order-Modes (HOM) in the cavity by HOM beamline absorbers at the ends of the cavity. To verify the optimized design of the cavity and the HOM damping scheme, a prototype 7-cell main linac cavity was installed into the Cornell Horizontal Test Cryomodule (HTC), and inserted into the beamline of the Cornell ERL high current photo-injector. A beam-based method was then used to search for the presence of dangerous HOMs. Individual HOMs were excited using a charge-modulated beam, after which their effect upon an unmodulated beam was observed using a BPM. Data collected was used to calculate loaded Q of observed HOMs. Results show that it is very unlikely that HOMs will cause BBU in the Cornell ERL. In addition, measurements of the temperature rise of the HOM absorber rings during high current CW beam tests were consistent with simulations, indicating that the optimized main linac cavity is capable of operating at the specified current of 100mA in an ERL configuration.