Author: Heilmann, M.
Paper Title Page
TUPP056 High Current Proton Beam Operation at GSI UNILAC 550
 
  • W.A. Barth, A. Adonin, P. Gerhard, M. Heilmann, R. Hollinger, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  A significant part of the experimental program at FAIR is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR Proton LINAC will deliver a pulsed proton beam of up to 35 mA of 36 μs duration at a repetition rate of 4 Hz. The current GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not dedicated for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown, that the UNILAC is able to provide for sufficient high intensities of CH3-beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach results in up to 2 mA of proton intensity at a maximum beam energy of 20 MeV, 100 μs pulse duration and a rep. rate of 4 Hz. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 17% of the FAIR requirements.  
 
TUPP062 A Rebunching CH Cavity for Intense Proton Beams 566
SUPG011   use link to see paper's listing under its alternate paper code  
 
  • M. Schwarz, C. Claessens, M. Heilmann, O. Hinrichs, D. Koser, O. Meusel, D. Mäder, H. Podlech, U. Ratzinger, A. Seibel
    IAP, Frankfurt am Main, Germany
 
  Funding: Project supported by the EU, FP7 MAX, Contract No. 269565
The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is currently under construction at the Goethe-University in Frankfurt am Main (Germany). A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final proton energy as well as for focusing the bunch longitudinally to compensate huge space charge forces at currents up to 200 mA at the final stage of extension. High current beam dynamic simulations have been performed. They include benchmarking of different beam dynamic codes like LORASR and TraceWin, as well as validating the results by measurements. Detailed examination of multipole field impact, due to the cavity’s geometry, together with error tolerance studies and thermal simulations are also performed. Furthermore, this CH rebuncher serves as a prototype for rt CH cavities at MYRRHA (Belgium), an Accelerator Driven System for transmutation of high level nuclear waste. After copper plating the cavity, RF conditioning will start soon.
 
poster icon Poster TUPP062 [6.015 MB]