Author: Hansen, J.
Paper Title Page
WEIOA01 Construction and RF Conditioning of the Cell-Coupled Drift Tube Linac (CCDTL) for Linac4 at CERN 746
 
  • A.G. Tribendis, Y.A. Biryuchevsky, E. Kendjebulatov, Ya.G. Kruchkov, E. Rotov, A.A. Zhukov
    BINP SB RAS, Novosibirsk, Russia
  • Y. Cuvet, A. Dallocchio, J.-F. Fuchs, F. Gerigk, J.-M. Giguet, J. Hansen, T. Muranaka, E. Page, B. Riffaud, N. Thaus, M. Tortrat, M. Vretenar, R. Wegner
    CERN, Geneva, Switzerland
  • M.Y. Naumenko
    RFNC-VNIITF, Snezhinsk, Chelyabinsk region, Russia
 
  This paper reports on the construction experience of the Linac4 CCDTL, which took place in two Russian institutes in the framework of three ISTC projects in close collaboration with CERN. The tanks were constructed at VNIITF, Snezhinsk, while the drift tubes and supports were made at BINP, Novosibirsk. All structures were then assembled and tuned at BINP before shipment to CERN where the high-power conditioning took place. The tuning principles, quality checks and conditioning results are presented.  
slides icon Slides WEIOA01 [4.909 MB]  
 
THPP036 CERN Linac4 Drift Tube Linac Manufacturing and Assembly 923
THPOL06   use link to see paper's listing under its alternate paper code  
 
  • S. Ramberger, P. Bourquin, A. Cherif, Y. Cuvet, A. Dallocchio, G. Favre, J.-F. Fuchs, J.-M. Geisser, F. Gerigk, J.-M. Giguet, J. Hansen, M. Polini, S. Sgobba, N. Thaus, M. Vretenar
    CERN, Geneva, Switzerland
 
  The manufacturing of the Linac4 Drift Tube Linac (DTL) components has been completed and the assembly of the structures is in its final stages. 3 tanks of 3.9m, 7.3m, and 7.3m, designed to accelerate a 40mA average pulse current H–beam from 3 to 50MeV, are being assembled from 2, 4 and 4 segments of about 2.0m length, containing each from 22 drift tubes at the low energy end, down to only 6 at the high energy end. Due to its peculiar design avoiding adjustment mechanisms on the drift tube, tight tolerances have to be maintained in the production. This paper discusses the assembly stages that are used to achieve the tolerances over the full length of the structures. Metrology results on the assembled DTL Tank1 confirm the required precision.  
 
THPP037 Commissioning and Operational Experience Gained with the Linac4 RFQ at CERN 926
THPOL02   use link to see paper's listing under its alternate paper code  
 
  • C. Rossi, L. Arnaudon, P. Baudrenghien, G. Bellodi, O. Brunner, J. Hansen, J.-B. Lallement, A.M. Lombardi, J. Noirjean
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, O. Piquet
    CEA/DSM/IRFU, France
 
  The installation of Linac4 has started in 2013 with the 3 MeV Front End, aiming at delivering a fully commissioned 160 MeV H beam by 2016. During summer 2013 the H ion source, a clone of the first prototype, and the Low Energy Beam Transport lines have been installed in the Linac4 tunnel followed shortly by the Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, which had already been commissioned at the 3 MeV Test Stand, was this time driven by a fully digital LLRF system. This paper reports the result of the bead-pull field check performed after the installation in the tunnel, the experience gained during recommissioning and the results of field characterization as a function of the water temperature in the RFQ cooling channels, showing how the accelerating field can be adjusted by simply tuning the different cavity modules.