Paper | Title | Page |
---|---|---|
MOPP013 | Vertical Test Results of 704 MHz BNL3 SRF Cavities | 73 |
|
||
Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE, and Award No. DE-SC0002496 to Stony Brook University with the U.S. DOE. An electron-ion collider (eRHIC) proposed at BNL requires superconducting RF cavities able to support high average beam current. A 5-cell niobium SRF cavity, called BNL3, was designed for a conventional lattice eRHIC design. To avoid inducing emittance degradation and beam-break-up (BBU), the BNL3 cavity was optimized to damp all dangerous higher-order-modes (HOMs) by employing a large beam pipes and coaxial antenna-type couplers. Additionally, the cavity was designed for an acceptable cryogenic load and peak surface RF fields. Two BNL3 cavities have been fabricated and tested at a vertical test facility at BNL. This paper addresses development of the SRF cavities for eRHIC, including SRF cavity design, fabrication and test results. |
||
TUPP055 | Progress on Euclid SRF Conical Half-Wave Resonator Project | 547 |
|
||
Funding: This Work is supported by the DOE SBIR Program, contract # DE-SC0006302. Euclid conical Half-Wave Resonator (cHWR) project develops 162.5 MHz β=v/c=0.11 accelerator structure for the high-intensity proton accelerator complex proposed at Fermi National Accelerator Laboratory. The main idea of this project is to provide a self-compensation cavity design together with its helium vessel to minimize the resonant frequency dependence on external loads. A unique cavity side-tuning option is also under development. Niowave, Inc. proposed a complete cavity production procedure including preparation of technical drawings, processing steps and resonator high-gradient tests to demonstrate such possibility for the private company. Here we present the procedure of the cavity and helium vessel fabrication, cavity preparation and initial experimental results. |
||