Author: Gonzalez, O.     [González, O.]
Paper Title Page
TUPP025 Progress on ESS Medium Energy Beam Transport 484
 
  • I. Bustinduy, D. Fernandez-Cañoto, N. Garmendia, A. Ghiglino, O. González, P.J. González, Z. Izaola, I. Madariaga, M. Magan, L. Muguira, J.L. Muñoz, I. Rueda, F. Sordo, S. Varnasseri, R. Vivanco
    ESS Bilbao, Bilbao, Spain
  • M. Eshraqi, R. Miyamoto, A. Ponton
    ESS, Lund, Sweden
 
  The considered versatile ESS MEBT is being designed to achieve four main goals: First, to contain a fast chopper and its correspondent beam dump, that could serve in the commissioning as well as in the ramp up phases. A detailed study of the chopper rise time effects on the loss budget will be presented. Second, to serve as a halo scraping section by means of various adjustable blades. Third, to measure the beam phase and profile between the RFQ and the DTL, along with other beam monitors. And finally, to match the RFQ output beam characteristics to the DTL input both transversally and longitudinally. For this purpose a set of eleven quadrupoles is used to match the beam characteristics transversally, combined with three 352.2 MHz CCL type buncher cavities, which are used to adjust the beam in order to fulfil the required longitudinal parameters. A thorough study on the optimal input beam parameters will be discussed. Quadrupole design update will be presented along with new RF measurements over the buncher prototype. Finally, updated results will be presented on the chopper and beam-dump system.  
poster icon Poster TUPP025 [5.596 MB]  
 
THPP025 RF Design and Low Power Measurements of a Nose-Cone Single Gap Buncher Cavity 888
 
  • O. González, I. Bustinduy, N. Garmendia, P.J. González, L. Muguira, J.L. Muñoz, A. Zugazaga
    ESS Bilbao, Bilbao, Spain
 
  A nose-cone single-gap buncher cavity for the Medium Energy Beam Transport (MEBT) has been fully designed, manufactured and measured under low-power conditions at ESS-Bilbao. The main steps of the design process are first reviewed. Second, the cavity is thoroughly measured and characterized by means of an automatic test procedure based on the bead-pull technique. Third, the simulated and measured results obtained for the main figures of merit are compared. Specifically, the results for the resonant frequency, the coupling and quality factors, the electric field profile, the R over Q ratio, the transit time factor and the tuning range are carefully analysed.