Paper |
Title |
Page |
WEIOA01 |
Construction and RF Conditioning of the Cell-Coupled Drift Tube Linac (CCDTL) for Linac4 at CERN |
746 |
|
- A.G. Tribendis, Y.A. Biryuchevsky, E. Kendjebulatov, Ya.G. Kruchkov, E. Rotov, A.A. Zhukov
BINP SB RAS, Novosibirsk, Russia
- Y. Cuvet, A. Dallocchio, J.-F. Fuchs, F. Gerigk, J.-M. Giguet, J. Hansen, T. Muranaka, E. Page, B. Riffaud, N. Thaus, M. Tortrat, M. Vretenar, R. Wegner
CERN, Geneva, Switzerland
- M.Y. Naumenko
RFNC-VNIITF, Snezhinsk, Chelyabinsk region, Russia
|
|
|
This paper reports on the construction experience of the Linac4 CCDTL, which took place in two Russian institutes in the framework of three ISTC projects in close collaboration with CERN. The tanks were constructed at VNIITF, Snezhinsk, while the drift tubes and supports were made at BINP, Novosibirsk. All structures were then assembled and tuned at BINP before shipment to CERN where the high-power conditioning took place. The tuning principles, quality checks and conditioning results are presented.
|
|
|
Slides WEIOA01 [4.909 MB]
|
|
|
THPP036 |
CERN Linac4 Drift Tube Linac Manufacturing and Assembly |
923 |
THPOL06 |
|
|
- S. Ramberger, P. Bourquin, A. Cherif, Y. Cuvet, A. Dallocchio, G. Favre, J.-F. Fuchs, J.-M. Geisser, F. Gerigk, J.-M. Giguet, J. Hansen, M. Polini, S. Sgobba, N. Thaus, M. Vretenar
CERN, Geneva, Switzerland
|
|
|
The manufacturing of the Linac4 Drift Tube Linac (DTL) components has been completed and the assembly of the structures is in its final stages. 3 tanks of 3.9m, 7.3m, and 7.3m, designed to accelerate a 40mA average pulse current H–beam from 3 to 50MeV, are being assembled from 2, 4 and 4 segments of about 2.0m length, containing each from 22 drift tubes at the low energy end, down to only 6 at the high energy end. Due to its peculiar design avoiding adjustment mechanisms on the drift tube, tight tolerances have to be maintained in the production. This paper discusses the assembly stages that are used to achieve the tolerances over the full length of the structures. Metrology results on the assembled DTL Tank1 confirm the required precision.
|
|
|