Author: Farabolini, W.
Paper Title Page
MOPP030 CALIFES: A Multi-Purpose Electron Beam for Accelerator Technology Tests 121
 
  • J.L. Navarro Quirante, R. Corsini, W. Farabolini, D. Gamba, A. Grudiev, M.A. Khan, T. Lefèvre, S. Mazzoni, R. Pan, F. Peauger, F. Tecker, N. Vitoratou, K. Yaqub
    CERN, Geneva, Switzerland
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • D. Gamba
    JAI, Oxford, United Kingdom
  • M.A. Khan, K. Yaqub
    PINSTECH, Islamabad, Pakistan
  • J. Ögren, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • N. Vitoratou
    Thessaloniki University, Thessaloniki, Greece
 
  The Compact Linear Collider (CLIC) project aims to accelerate and collide electrons and positrons up to 3 TeV center-of-mass energy using a novel two-beam acceleration concept. To prove the feasibility of this technology the CLIC Test Facility CTF3 has been operated during the last years. CALIFES (Concept d’Accélérateur Linéaire pour Faisceau d’Electron Sonde) is an electron linac hosted in the CTF3 complex, which provides a flexible electron beam and the necessary equipment to probe both the two-beam acceleration concept and novel instrumentation to be used in the future CLIC collider. In this paper we describe the CALIFES Linac and its beam characteristics, present recent test results, outline its future program on two-beam module testing and finally discuss about possible future applications as a multi-purpose accelerator technology test facility.  
 
TUPP028 Beam Tests at the CLIC Test Facility, CTF3 487
 
  • R. Corsini, S. Döbert, W. Farabolini, D. Gamba, J.L. Navarro Quirante, T. Persson, P.K. Skowronski, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • D. Gamba
    JAI, Oxford, United Kingdom
 
  The CLIC Test Facility CTF3 has been built at CERN by the Compact Linear Collider (CLIC) International Collaboration, in order to prove the main feasibility issues of the two-beam acceleration technology on which the collider is based. After the successful completion of its initial task, CTF3 is continuing its experimental program in order to give further indications on cost and performance issues, to act as a test bed for the CLIC technology, and to conduct beam experiments aimed at mitigating technological risks. In this paper we discuss the status of the ongoing experiments and present the more recent results, including improvements in beam quality and stability.  
 
TUPP028 Beam Tests at the CLIC Test Facility, CTF3 487
 
  • R. Corsini, S. Döbert, W. Farabolini, D. Gamba, J.L. Navarro Quirante, T. Persson, P.K. Skowronski, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • D. Gamba
    JAI, Oxford, United Kingdom
 
  The CLIC Test Facility CTF3 has been built at CERN by the Compact Linear Collider (CLIC) International Collaboration, in order to prove the main feasibility issues of the two-beam acceleration technology on which the collider is based. After the successful completion of its initial task, CTF3 is continuing its experimental program in order to give further indications on cost and performance issues, to act as a test bed for the CLIC technology, and to conduct beam experiments aimed at mitigating technological risks. In this paper we discuss the status of the ongoing experiments and present the more recent results, including improvements in beam quality and stability.  
 
TUPP029 Diagnostics and Analysis Techniques for High Power X-Band Accelerating Structures 490
SUPG002   use link to see paper's listing under its alternate paper code  
 
  • A. Degiovanni, S. Döbert, W. Farabolini, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • J. Giner Navarro
    IFIC, Valencia, Spain
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The study of high gradient limitations due to RF breakdowns is extremely important for the CLIC project. A series of diagnostic tools and analysis techniques have been developed in order to monitor and characterize the behaviour of CLIC accelerating structures under high power operation in the first CERN X-band klystron-based test stand (Xbox1). The data collected during the last run on a TD26r05 structure are presented in this paper. From the analysis of the RF power and phases, the location of the breakdowns inside the structure could be determined. Other techniques based on the field emitted dark current signals collected by Faraday cups placed at the two extremities of the structure have also been investigated. The results of these analyses are reported and discussed.