Author: Fang, W.
Paper Title Page
MOPP023 X-band Technology for FEL Sources 101
MOPOL02   use link to see paper's listing under its alternate paper code  
 
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • E. Adli
    University of Oslo, Oslo, Norway
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.J. Bocchetta, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • M.J. Boland, T.K. Charles, R.T. Dowd, G. LeBlanc, Y.E. Tan, K.P. Wootton, D. Zhu
    SLSA, Clayton, Australia
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • N. Catalán Lasheras, A. Grudiev, A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • E.N. Gazis
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen
    VDL ETG, Eindhoven, The Netherlands
 
  As is widely recognized, fourth generation Light Sources are based on FELs driven by Linacs. Soft and hard X-ray FEL facilities are presently operational at several laboratories, SLAC (LCLS), Spring-8 (SACLA), Elettra-Sincrotrone Trieste (FERMI), DESY (FLASH), or are in the construction phase, PSI (SwissFEL), PAL (PAL-XFEL), DESY (European X-FEL), SLAC (LCLS II), or are newly proposed in many laboratories. Most of the above mentioned facilities use NC S-band (3 GHz) or C-band (6 GHz) linacs for generating a multi-GeV low emittance beam. The use of the C-band increases the linac operating gradients, with an overall reduction of the machine length and cost. These advantages, however, can be further enhanced by using X-band (12 GHz) linacs that operate with gradients twice that given by C-band technology. With the low bunch charge option, currently considered for future X-ray FELs, X-band technology offers a low cost and compact solution for generating multi-GeV, low emittance bunches. The paper reports the ongoing activities in the framework of a collaboration among several laboratories for the development and validation of X-band technology for FEL based photon sources.  
 
TUPP127 R&D of X-band Accelerating Structure for Compact XFEL at SINAP 715
 
  • W. Fang, Q. Gu, M. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.J. Bocchetta, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • E.N. Gazis
    National Technical University of Athens, Athens, Greece
  • A. Grudiev, A. Latina, D. Schulte, S. Stapnes, W. Wuensch
    CERN, Geneva, Switzerland
 
  One compact hard X-ray FEL facility is being planned at SINAP, and X-band high gradient accelerating structure is the most competetive scheme for this plan. X-band accelerating structure is designed to switch between 60MV/m and 80MV/m, and carries out 6GeV and 8GeV by 130 meters linac respectively. In this paper, brief layout of compact XFEL will be introduced, and in particular the prototype design of dedicated X-band acceleration RF system is also presented.  
 
TUPP129
A measurement and tuning method for traveling wave deflecting structure  
 
  • J.H. Tan, W. Fang, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • D.C. Tong
    TUB, Beijing, People's Republic of China
 
  For traveling wave accelerating structures, the tuning method assisted by bead pull technique based on non-resonant perturbation field distribution measurement has been widely applied for measure and tuning both constant-impedance and constant-gradient structures. The method is also suitable for deflecting structures, but some key considerations of the field component and of the bead are discussed. The measurement and tuning method will be used on new X-band deflecting cavity at SINAP, and the measurement on S-band traveling wave deflecting cavity is presented at last.  
 
THPP128
The optimization of C-band RF pulse compressor for SXFEL linac at SINAP  
 
  • C.P. Wang, W. Fang, Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  RF output of klystron and RF requirements of accelerator structure are two key factors for design of RF pulse compressor. According to these two factors, we can select the appropriate parameters and operating mode for optimizing RF pulse compressor cavity. And a general method of optimizing RF pulse compressor is summed in this paper, and using this method one precept of the C-band SLED type RF pulse compressor using TE0111 mode as the resonant cavity storage model is designed and studied at Shanghai Institute of Applied Physics, Chinese Academy of Science. By comparing the C-band RF pulse compressor using TE0115 mode as the resonant cavity storage model, the new precept have advantage of decreasing of the size of the resonant cavity, therefore it could save the installation space, reduce the construction cost and processing easily. Meanwhile it remains the high power gain and the large efficiency of C-band RF pulse compressor, and it also has no influence for the power requirement of the C-band accelerator structure at the Shanghai soft X-ray FEL facility.