Author: Eichhorn, R.G.
Paper Title Page
TUIOA02 R&D Efforts for ERLs 394
 
  • R.G. Eichhorn
    Cornell University, Ithaca, New York, USA
 
  The last few years has seen extensive R&D for ERLs, with several prototype facilities now under construction or in operation. The Cornell ERL R&D program has reached major goals, with producing the world’s brightest beam from any photoinjector, reaching CW beam current of greaters than 75 mA, and reaching intrinsic quality factors of 1011 in an SRF cavity installed in a cryomodule. The talk gives an overview of status of ERLs projects, and ERL R&D.  
slides icon Slides TUIOA02 [8.803 MB]  
 
MOPP018 Nitrogen-Doped 9-Cell Cavity Performance in the Cornell Horizontal Test Cryomodule 88
 
  • D. Gonnella, R.G. Eichhorn, F. Furuta, G.M. Ge, D.L. Hall, Y. He, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, A. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  Funding: U.S. Department of Energy
Cornell has recently completed construction and qualification of a horizontal cryomodule capable of holding a 9-cell ILC cavity. A nitrogen-doped niobium 9-cell cavity was assembled into the Horizontal Test Cryomodule (HTC) with a high Q input coupler and tested. We report on results from this test of a nitrogen-doped cavity in cryomodule and discuss the effects of cool down rate and thermal cycling on the residual resistance of the cavity.
 
 
MOPP020 Input Couplers for Cornell ERL 95
 
  • R.G. Eichhorn, P. Quigley, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.A. Belomestnykh
    BNL, Upton, Long Island, New York, USA
 
  Cornell has developed two types of input couplers for the Energy Recovery Linac (ERL) Project. Both couplers are 1.3 GHz CW coaxial couplers. The coupler for ERL injector is a 65 kW CW coupler with variable coupling (Qext = 9*E4 to 9*E5). The coupler for ERL main linac is a 5 kW CW coupler with fixed coupling. It can be easily modified for variable coupling operation. Couplers have been tested on test stands and in cryomodules and showed good performance.  
 
TUPP016
Cornell ERL cavity production and vertical test results  
 
  • F. Furuta, B. Bullock, B. Clasby, R.G. Eichhorn, B. Elmore, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell ERL 7-cell cavities for the Main Linac Cryomodule (MLC), six 7-cells in total- have been fabricated, processed, and tested in the Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) vertical test pit. All have surpassed the specification values (Eacc=16.2MV/m with Qo of 2.0·1010 at 1.8K). In fact, the achieved Qo during vertical test were much higher than specs, the average of Qo is almost 3·1010 at 1.8K. In this poster, we will describe about our ERL cavity fabrication, preparation, and vertical testing results.  
 
THPP017 Beam-Based HOM Studies of the Cornell Energy Recovery Linac 7-Cell SRF Cavity 869
 
  • D.L. Hall, A.C. Bartnik, M.G. Billing, R.G. Eichhorn, G.H. Hoffstaetter, M. Liepe, C.E. Mayes, P. Quigley, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF Grant DMR-0807731
The 1.3 GHz 7-cell SRF cavity for the Cornell ERL main linac is optimized for high beam current ERL operation with injected CW beam currents of 100 mA. Beam stability at 100 mA requires very strong damping of the Higher-Order-Modes (HOM) in the cavity by HOM beamline absorbers at the ends of the cavity. To verify the optimized design of the cavity and the HOM damping scheme, a prototype 7-cell main linac cavity was installed into the Cornell Horizontal Test Cryomodule (HTC), and inserted into the beamline of the Cornell ERL high current photo-injector. A beam-based method was then used to search for the presence of dangerous HOMs. Individual HOMs were excited using a charge-modulated beam, after which their effect upon an unmodulated beam was observed using a BPM. Data collected was used to calculate loaded Q of observed HOMs. Results show that it is very unlikely that HOMs will cause BBU in the Cornell ERL. In addition, measurements of the temperature rise of the HOM absorber rings during high current CW beam tests were consistent with simulations, indicating that the optimized main linac cavity is capable of operating at the specified current of 100mA in an ERL configuration.
 
 
THPP019 Low Kick Coupler for Superconducting Cavities 876
 
  • R.G. Eichhorn, C. Egerer, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Results from the high current, low emittance photo injector at Cornell revealed that even with two opposing input couplers, the beam emittance is affected by the coupler kick. As a result, a coupler with low transverse kick is proposed for use in superconducting accelerating cavities. In this coupler, a rectangular waveguide transforms into a coaxial line inside the beam pipe. The geometry of the coupler is tuned to minimize the transverse kick that is important for linear accelerators with low emittance. The coupler can be used in ERL injectors or other linacs for high brightness light sources.