Author: Corsini, R.
Paper Title Page
MOPP030 CALIFES: A Multi-Purpose Electron Beam for Accelerator Technology Tests 121
 
  • J.L. Navarro Quirante, R. Corsini, W. Farabolini, D. Gamba, A. Grudiev, M.A. Khan, T. Lefèvre, S. Mazzoni, R. Pan, F. Peauger, F. Tecker, N. Vitoratou, K. Yaqub
    CERN, Geneva, Switzerland
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • D. Gamba
    JAI, Oxford, United Kingdom
  • M.A. Khan, K. Yaqub
    PINSTECH, Islamabad, Pakistan
  • J. Ögren, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • N. Vitoratou
    Thessaloniki University, Thessaloniki, Greece
 
  The Compact Linear Collider (CLIC) project aims to accelerate and collide electrons and positrons up to 3 TeV center-of-mass energy using a novel two-beam acceleration concept. To prove the feasibility of this technology the CLIC Test Facility CTF3 has been operated during the last years. CALIFES (Concept d’Accélérateur Linéaire pour Faisceau d’Electron Sonde) is an electron linac hosted in the CTF3 complex, which provides a flexible electron beam and the necessary equipment to probe both the two-beam acceleration concept and novel instrumentation to be used in the future CLIC collider. In this paper we describe the CALIFES Linac and its beam characteristics, present recent test results, outline its future program on two-beam module testing and finally discuss about possible future applications as a multi-purpose accelerator technology test facility.  
 
TUPP028 Beam Tests at the CLIC Test Facility, CTF3 487
 
  • R. Corsini, S. Döbert, W. Farabolini, D. Gamba, J.L. Navarro Quirante, T. Persson, P.K. Skowronski, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • D. Gamba
    JAI, Oxford, United Kingdom
 
  The CLIC Test Facility CTF3 has been built at CERN by the Compact Linear Collider (CLIC) International Collaboration, in order to prove the main feasibility issues of the two-beam acceleration technology on which the collider is based. After the successful completion of its initial task, CTF3 is continuing its experimental program in order to give further indications on cost and performance issues, to act as a test bed for the CLIC technology, and to conduct beam experiments aimed at mitigating technological risks. In this paper we discuss the status of the ongoing experiments and present the more recent results, including improvements in beam quality and stability.  
 
TUPP033 Effect of Beam-Loading on the Breakdown Rate of High Gradient Accelerating Structures 499
TUPOL08   use link to see paper's listing under its alternate paper code  
 
  • J.L. Navarro Quirante, R. Corsini, A. Degiovanni, S. Döbert, A. Grudiev, O. Kononenko, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, F. Tecker, L. Timeo, B.J. Woolley, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O. Kononenko
    SLAC, Menlo Park, California, USA
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • X.W. Wu
    TUB, Beijing, People's Republic of China
 
  The Compact Linear Collider (CLIC) is a study for a future room temperature electron-positron collider with a maximum center-of-mass energy of 3 TeV. To efficiently achieve such high energy, the project relies on a novel two beam acceleration concept and on high-gradient accelerating structures working at 100 MV/m. In order to meet the luminosity requirements, the break-down rate in these high-field structures has to be kept below 10 per billion. Such gradients and breakdown rates have been demonstrated by high-power RF testing several 12 GHz structures. However, the presence of beam-loading modifies the field distribution for the structure, such that a higher input power is needed in order to achieve the same accelerating gradient as the unloaded case. The potential impact on the break-down rate was never measured before. In this paper we present an experiment located at the CLIC Test Facility CTF3 recently proposed in order to quantify this effect, layout and hardware status, and discuss its first results.  
slides icon Slides TUPP033 [1.970 MB]  
poster icon Poster TUPP033 [2.355 MB]