High-Field Short-Period Microwave Undulators

Sami Tantawi, Muhammad Shumail, <u>Jeffrey Neilson</u>, Gordon Bowden, Valery Dolgashev, Chao Chang, Michael Dunning, Erik Hemsing, and Stephen Weathersby

Permanent Magnet Undulators

- Periodic arrangement of dipole magnet generates alternating magnetic field which deflects beam sinusoidally
- Synchrotron radiation emitted at wavelength

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2\right)$$

• λ_u typically >2 cm, K (interaction strength) 1 to 3

- Limitations of static undulator technology
 - Cannot be dynamically tuned
 - Small beam aperture
 - Difficult to build with $\lambda_u < 1$ cm

- Time varying RF fields can be used in place of static undulator
- Many desirable features
 - Fast dynamic control of
 - Polarization
 - Radiation Wavelength
 - Large aperture (cm vs mm for static undulator)
 - No issue with permanent magnet damage by radiation

 All designs to date produce too low of K value to be of much interest

- Limitations
 - Excessive field level/loss on metallic surfaces
 - Power levels exceeding available sources
- Undulator with 1.4 cm period and K parameter of 1 using a travelling wave TE₁₁ mode in circular guide requires 6 GW

Resonant RF Undulator in Circular Guide

- Resonant structures reduce required power by order of magnitude
- Power requirements reduced further by use of higher order modes

Resonant RF Undulator in Circular Guide - Cont

- Higher-order modes require more stored energy, hence longer filling times
- Same issue applies to other overmoded structures that have been proposed
- => Need a lower loss mode than available in conventional waveguides

HE₁₁ Mode in Corrugated Guide

- Lowest order mode (HE₁₁) is a combination of primarily TE₁₁ and TM₁₁ modes
- Magnetic field is extremely low on waveguide walls attenuation can be less than that of smooth wall cylindrical TE₀₁ mode
- Field configuration ideal for beam interaction

Resonator Power Requirements for K = 1

Resonator Stored Energy for K = 1

HE₁₁ Resonator Design

Design parameters

- 70 periods, 1 meter
- Q₀ = 94,000
- K = 1 for 50 MW
- Fr = 11.424 GHz

Design Issues

- High mode density (1.5λ diameter, 40λ long)
- High peak surface heating at end walls

Cold Test

SLAC

Measured resonance frequency Room temp in air : 11.419 GHz 12.1 °C in vacuum : 11.424 GHz

Q₀ = 91,000 (94,000 calculated)

Cold Test - Cont

SLAC

Distance Along the Undulator Axes (cm)

Wavelength versus K for 70 MeV Beam Energy

Seeding

Second Harmonic Seeding

Beam Position Drift

Max drift (measured) = 1.52 ± 0.03 mm (assuming 0.094 ± 0.002 mm/pixel) Max drift (calculated) = 1.27 mm

K **i** 0.6 · 69 MeV

Conclusions & Next Steps

• First demonstration of a viable approach for an RF undulator

- Not an inexpensive solution, \$1M+ / meter for X-band (λ_u 1.4 cm)
- Scaling to shorter undulator periods (higher RF frequency) limited by available RF sources

Next Steps:

- "After burner" for LCLS dynamic control of polarization
- Teaming with commercial company to develop superconducting undulator – will allow use of solid state sources

Spectrum Intensity vs K for 70 MeV Beam Energy

Small Glitch

Two coupling ports 90° apart

Coupler Field Configuration

Input coupler intended to excite two polarizations independently

- Hybrid feed would generate circular polarization
- Reflection in opposite phase would go to load
- Design error coupled orthogonal polarizations
- Ran experiment in single polarization

Coupling error limited power, maximized hassle...

