Solid State Marx Modulators for Emerging Applications

Mark Kemp- 9/12/2012

•General modulator characteristics and where advancement is needed

•The solid-state Marx modulator topology

•Some recent implementations

•The SLAC P2 Marx

•Potential application of the topology to emerging applications

SLAO

Desired Characteristics of Next-Generation Modulators

Low Cost Easily Maintained High A	vailability Superior Pulse Quality
-----------------------------------	---------------------------------------

Desired Characteristics of Next-Generation Modulators

How does a Marx Modulator Achieve these characteristics?

Low Cost	Easily Maintained	High Availability	Superior Pulse Quality
Modularity			
Low-Voltage Sub-Units			
Electrostatic Adding			
Independent Module Control			

The Marx Modulator Topology

The Marx Modulator Topology

What characteristic may a cell have during the pulse?

- •As implemented above, an RC decay
- •Chopped output pulse
- •Flat pulse
- Ramping pulse

The Marx Modulator Topology

What characteristic may a cell have during the pulse?

- •As implemented above, an RC decay
- •Chopped output pulse
- •Flat pulse
- Ramping pulse

The best option depends on the application

Modularity

•Building blocks can be arranged in different configurations for different applications

Many inexpensive components

Electrostatic Adding

Pulse transformer not necessary

Independent Module Control

Reconfiguration possible

Low-Voltage Sub-Units

 Conventional power electronic converter techniques can be employed

Commoditized components

SLAO

Some Embodiments of the Technology

DTI ILC Marx Modulator

Cells have RC droopStaggered turn-on produces overall flat output pulse **SLAC P1 Marx Modulator**

•-120 kV, 140 A, 1.6 ms, 5 Hz

Some Embodiments of the Technology

NRL Marx Modulator for KrF Laser

•-200 kV, -5 kA, 300 ns, 10 Hz pulses

F. Hegeler, et al., "A Durable Gigawatt Class Solid State Pulsed Power System, Trans. Plasma Sci. 2011.

Some Embodiments of the Technology

Thompson "Pulse Step" Modulator

Used in several accelerators.
Shown here is XFEL configuration
Cells have chopped-pulse output and are interleaved and filtered
"Power supply" is integrated into modulator architecture

Operation into a pulse transformer

The SLAC P2 Marx

The SLAC P2 Marx

In

In

In

• N+2 redundancy

SLAC P2 Marx Photographs

SLAC P2 Marx Performance

- Marx rise and fall times are ~10 μs
- A flat top beyond ILC specifications has been demonstrated -> +/-0.05% over 1.6ms

SLAC P2 Marx: Simple Maintenance

 A single cell can be changed in 2 minutes

SLAC

Maintenance is "back at the shop" rather than at the modulator -> low MTTR

SLAC P2 Marx Control System

SLAC P2 Marx Control System

•The ILC P2 Marx building block has:

- A maximum voltage (4kV)
- A maximum peak current (200A)
 - Can increase by changing switches
- A maximum average power
 - Can increase by changing cooling
- A maximum energy transfer per pulse
 - Can increase by increasing cell capacitance

•The ILC P2 Marx building block has:

- A maximum voltage (4kV)
- A maximum peak current (200A)
 - Can increase by changing switches
- A maximum average power
 - Can increase by changing cooling
- A maximum energy transfer per pulse
 - Can increase by increasing cell capacitance

- A maximum voltage (4kV)
- A maximum peak current (200A)
 - Can increase by changing switches
- A maximum average power
 - Can increase by changing cooling
- A maximum energy transfer per pulse
 - Can increase by increasing cell capacitance

•The ILC P2 Marx building block has:

- A maximum voltage (4kV)
- A maximum peak current (200A)
 - Can increase by changing switches
- A maximum average power
 - Can increase by changing cooling
- A maximum energy transfer per pulse
 - Can increase by increasing cell capacitance

•The ILC P2 Marx building block has:

- A maximum voltage (4kV)
- A maximum peak current (200A)
 - Can increase by changing switches
- A maximum average power
 - Can increase by changing cooling
- A maximum energy transfer per pulse
 - Can increase by increasing cell capacitance

SLAC

•Assume 4.8MW, 14 Hz, 3.4ms pulse

•Assume same cell structure, same cell operating voltage, and N+2 redundancy

	# of Cells	Max Single Cell Loss	DC to Pulse Efficiency
ILC P2 Marx	32	410 W	95.0%
80kV ESS Marx	23	780 W	95.8%
113 kV ESS Marx	31	610 W	95.5%

•Challenging for efficiency and pulse-to-pulse reproducibility

Pulse Voltage	150 kV
Pulse Current	160 A
Pulse Width	140 µs
Reproducibility	10-50ppm
AC-Pulse Eff.	90%
Pulse Rep. Freq.	50 Hz

D. Aguglia, *et al*, "Klystron Modulator Technology Challenges for the Compact Linear Collider" Pulsed Power Conference, 2011. SLA0

•Challenging for efficiency and pulse-to-pulse reproducibility

Pulse Voltage	150 kV
Pulse Current	160 A
Pulse Width	140 µs
Reproducibility	10-50ppm
AC-Pulse Eff.	90%
Pulse Rep. Freq.	50 Hz

D. Aguglia, *et al*, "Klystron Modulator Technology Challenges for the Compact Linear Collider" Pulsed Power Conference, 2011. •To address the pulse-to-pulse reproducibility specification, take advantage of in-cell diagnostics and control loops

•For example:

•A 12-bit diagnostic on the output can only hope to achieve 1/2¹² precision

•However, regulating on each of the n cells improves this number to $1/(n)^{0.5}/2^{12}$

Precision can be improved from 244 ppm to 40 ppm

Fermi 201 MHz Linac Triode Modulator

Fermi 201 MHz Linac Triode Modulator

-SLAC

Fermi 201 MHz Linac Triode Modulator

•Solid state Marx modulators have characteristics which make them attractive for emerging applications

•Focus is on producing high availability, superior pulse quality, and an easily maintained system

 Modular topology with low-voltage subunits allows traditional power electronics techniques to be utilized

THANK YOU!