TUP079 DESIGN AND BEAM TEST OF SIX-ELECTRODE BPMS

Kenichi YANAGIDA, Shisuke SUZUKI, and Hirofumi HANAKI Japan Synchrotron Radiation Research Institute / SPring-8

- The BPM system is being upgraded to a six-electrode BPM system in the SPring-8 LINAC.
- Purpose: To enhance the beam observation during the top-up operation
 Measurement of second-order moments
- We developed BPMs with circular and quasi-elliptical cross-sections.
- We present the BPM designs, the principle of the multipole moment measurement, and the beam test results.

Absolute moments using six-electrode BPM

• Absolute moments, **Pn**, **Qn**, are moments with respect to the duct center and obtained by taking voltage differences with nomarized moments.

$P_{1} = \frac{R_{P1}}{V_{1} - V_{3} - V_{4} + V_{6}}$		$Q_{i} = \frac{R}{2}$	$R_{Q1} V_1 + V_3 - V_4 - V_6$
2 $V_1 + V_3 + V_4 + V_6$		$\mathbf{x}_1 - \mathbf{x}_2$	2 $V_1 + V_3 + V_4 + V_6$
$P = \frac{R_{P2}^2}{kV_1 - 2V_2 + kV_3 + kV_4 - 2k_2}$	$2V_5 + V_5$	$kV_6 = R$	$\frac{2}{Q2}V_{1} - V_{3} + V_{4} - V_{6}$
$V_2 = \frac{1}{2} \frac{1}{kV_1 + 2V_2 + kV_3 + kV_4 + 2}$	$2V_{5} + V_{5}$	kV_6 $\omega_2 = -\frac{1}{2}$	$\frac{1}{2} V_{1} + V_{3} + V_{4} + V_{6}$
n. Order of multipole moment Q_{-}	$= \frac{R_{Q3}^3}{R_{Q3}^3}$	$\frac{KV_1 - V_2 + KV}{KV_1 - V_2 + KV}$	$V_{3} - KV_{4} + V_{5} + KV_{6}$
Vd: Output voltage of electrode d	2	$KV_1 + V_2 + KV_2$	$V_{3} + KV_{4} + V_{5} + KV_{6}$
(d = 1,, 6)		Circular	Quasi-elliptical
$\frac{R_{Pn}^{n}}{2}, \frac{R_{Qn}^{n}}{2}$: Normalized moment	R_{P1}	18.69 mm	18.03 mm
	R_{Q1}	32.38 mm	54.84 mm
R _{Pn} , R _{Qn} : Effective aperture radius	$R_{_{P2}}$	18.91 mm	18.42 mm
	R_{Q2}	17.59 mm	22.48 mm
k. K : Geometrical Factors	R_{Q3}	16.57 mm	18.55 mm
Calculated : analytically (circular)	k	1.000	1.918
numerically (quasi-elliptical)	Κ	1.000	3.056

TUP079 Relative moments extracted from absolute moments

• Absolute moments are complicated to compare the multipole moments taken by a screen monitor and a BPM, but relative moments are not.

SPri

• Relative moments, **Pgn**, **Qgn**, are defined as the moments with respect to the beam centroid and extracted from the absolute moments.

TUP079 Screen monitor for relative moment measurement

- At the beam test, the relative moments were also measured by the screen monitor.
- I(xi, yj): Intensity distribution on the screen (xi, yj): Position of data cell from screen center

$$\begin{split} m_{00} &= \sum_{i} \sum_{j} I(x_{i}, y_{j}) & m_{10} = \sum_{i} \sum_{j} x_{i} I(x_{i}, y_{j}) & P_{1} = \frac{m_{10}}{m_{00}} & Q_{1} = \frac{m_{01}}{m_{00}} \\ m_{01} &= \sum_{i} \sum_{j} y_{i} I(x_{i}, y_{j}) & m_{20} = \sum_{i} \sum_{j} x_{i}^{2} I(x_{i}, y_{j}) & P_{2} = \frac{m_{20} - m_{02}}{m_{00}} & Q_{2} = \frac{2m_{11}}{m_{00}} \\ m_{11} &= \sum_{i} \sum_{j} x_{i} y_{j} I(x_{i}, y_{j}) & m_{02} = \sum_{i} \sum_{j} y_{j}^{2} I(x_{i}, y_{j}) & Q_{3} = \frac{3m_{21} - m_{03}}{m_{00}} \\ m_{21} &= \sum_{i} \sum_{j} x_{i}^{2} y_{j} I(x_{i}, y_{j}) & m_{03} = \sum_{i} \sum_{j} y_{j}^{3} I(x_{i}, y_{j}) & Q_{3} = \frac{3m_{21} - m_{03}}{m_{00}} \end{split}$$

Entire calibration using electron beams

 Entire calibration: To determine relative attenuation factors between electrode channels

• Principle:

By means of steering magnets we change the position of the beam centroid. -> Absolute moments, Pn, Qn, vary.

But we do not change beam distribution with respect to the beam centroid. -> Relative moments, Pgn, Qgn, do not vary.

Correlation measurement

• We compared the second-order relative moments taken by **screen monitor (abscissa)** to those taken by **BPM (ordinate)** when we changed beam intensity distribution by changing magnetic field of upstream quadrupole magnet.

• Correlation plot apparently indicates direct proportionality relation with proportionality coefficient of 1.

-> Important consequences

• Such BPMs with stripline-type electrodes, **normalized moments** can be **obtained accurately by analytical or maybe numerical electrostatic field calculation**.

• Entire calibration is useful as is self-consistent method for precise calibration to determine relative attenuation factors between electrode channels.

